llama-stack-mirror/tests
IAN MILLER 98a5047f9d
feat(prompts): attach prompts to storage stores in run configs (#3893)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for attaching prompts to storage stores in run
configs. It allows to specify prompts as stores in different
distributions. The need of this functionality was initiated in #3514

> Note, #3514 is divided on three separate PRs. Current PR is the first
of three.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Manual testing and updated CI unit tests

Prerequisites:

1. `uv run --with llama-stack llama stack list-deps starter | xargs -L1
uv pip install`

2. `llama stack run starter `

```
INFO     2025-10-23 15:36:17,387 llama_stack.cli.stack.run:100 cli: Using run configuration:                            
         /Users/ianmiller/llama-stack/llama_stack/distributions/starter/run.yaml                                        
INFO     2025-10-23 15:36:17,423 llama_stack.cli.stack.run:157 cli: HTTPS enabled with certificates:                    
           Key: None                                                                                                    
           Cert: None                                                                                                   
INFO     2025-10-23 15:36:17,424 llama_stack.cli.stack.run:159 cli: Listening on ['::', '0.0.0.0']:8321                 
INFO     2025-10-23 15:36:17,749 llama_stack.core.server.server:521 core::server: Run configuration:                    
INFO     2025-10-23 15:36:17,756 llama_stack.core.server.server:524 core::server: apis:                                 
         - agents                                                                                                       
         - batches                                                                                                      
         - datasetio                                                                                                    
         - eval                                                                                                         
         - files                                                                                                        
         - inference                                                                                                    
         - post_training                                                                                                
         - safety                                                                                                       
         - scoring                                                                                                      
         - tool_runtime                                                                                                 
         - vector_io                                                                                                    
         image_name: starter                                                                                            
         providers:                                                                                                     
           agents:                                                                                                      
           - config:                                                                                                    
               persistence:                                                                                             
                 agent_state:                                                                                           
                   backend: kv_default                                                                                  
                   namespace: agents                                                                                    
                 responses:                                                                                             
                   backend: sql_default                                                                                 
                   max_write_queue_size: 10000                                                                          
                   num_writers: 4                                                                                       
                   table_name: responses                                                                                
             provider_id: meta-reference                                                                                
             provider_type: inline::meta-reference                                                                      
           batches:                                                                                                     
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: batches                                                                                     
             provider_id: reference                                                                                     
             provider_type: inline::reference                                                                           
           datasetio:                                                                                                   
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: datasetio::huggingface                                                                      
             provider_id: huggingface                                                                                   
             provider_type: remote::huggingface                                                                         
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: datasetio::localfs                                                                          
             provider_id: localfs                                                                                       
             provider_type: inline::localfs                                                                             
           eval:                                                                                                        
           - config:                                                                                                    
               kvstore:                                                                                                 
                 backend: kv_default                                                                                    
                 namespace: eval                                                                                        
             provider_id: meta-reference                                                                                
             provider_type: inline::meta-reference                                                                      
           files:                                                                                                       
           - config:                                                                                                    
               metadata_store:                                                                                          
                 backend: sql_default                                                                                   
                 table_name: files_metadata                                                                             
               storage_dir: /Users/ianmiller/.llama/distributions/starter/files                                         
             provider_id: meta-reference-files                                                                          
             provider_type: inline::localfs                                                                             
           inference:                                                                                                   
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.fireworks.ai/inference/v1                                                               
             provider_id: fireworks                                                                                     
             provider_type: remote::fireworks                                                                           
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.together.xyz/v1                                                                         
             provider_id: together                                                                                      
             provider_type: remote::together                                                                            
           - config: {}                                                                                                 
             provider_id: bedrock                                                                                       
             provider_type: remote::bedrock                                                                             
           - config:                                                                                                    
               api_key: '********'                                                                                      
               base_url: https://api.openai.com/v1                                                                      
             provider_id: openai                                                                                        
             provider_type: remote::openai                                                                              
           - config:                                                                                                    
               api_key: '********'                                                                                      
             provider_id: anthropic                                                                                     
             provider_type: remote::anthropic                                                                           
           - config:                                                                                                    
               api_key: '********'                                                                                      
             provider_id: gemini                                                                                        
             provider_type: remote::gemini                                                                              
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.groq.com                                                                                
             provider_id: groq                                                                                          
             provider_type: remote::groq                                                                                
           - config:                                                                                                    
               api_key: '********'                                                                                      
               url: https://api.sambanova.ai/v1                                                                         
             provider_id: sambanova                                                                                     
             provider_type: remote::sambanova                                                                           
           - config: {}                                                                                                 
             provider_id: sentence-transformers                                                                         
             provider_type: inline::sentence-transformers                                                               
           post_training:                                                                                               
           - config:                                                                                                    
               checkpoint_format: meta                                                                                  
             provider_id: torchtune-cpu                                                                                 
             provider_type: inline::torchtune-cpu                                                                       
           safety:                                                                                                      
           - config:                                                                                                    
               excluded_categories: []                                                                                  
             provider_id: llama-guard                                                                                   
             provider_type: inline::llama-guard                                                                         
           - config: {}                                                                                                 
             provider_id: code-scanner                                                                                  
             provider_type: inline::code-scanner                                                                        
           scoring:                                                                                                     
           - config: {}                                                                                                 
             provider_id: basic                                                                                         
             provider_type: inline::basic                                                                               
           - config: {}                                                                                                 
             provider_id: llm-as-judge                                                                                  
             provider_type: inline::llm-as-judge                                                                        
           - config:                                                                                                    
               openai_api_key: '********'                                                                               
             provider_id: braintrust                                                                                    
             provider_type: inline::braintrust                                                                          
           tool_runtime:                                                                                                
           - config:                                                                                                    
               api_key: '********'                                                                                      
               max_results: 3                                                                                           
             provider_id: brave-search                                                                                  
             provider_type: remote::brave-search                                                                        
           - config:                                                                                                    
               api_key: '********'                                                                                      
               max_results: 3                                                                                           
             provider_id: tavily-search                                                                                 
             provider_type: remote::tavily-search                                                                       
           - config: {}                                                                                                 
             provider_id: rag-runtime                                                                                   
             provider_type: inline::rag-runtime                                                                         
           - config: {}                                                                                                 
             provider_id: model-context-protocol                                                                        
             provider_type: remote::model-context-protocol                                                              
           vector_io:                                                                                                   
           - config:                                                                                                    
               persistence:                                                                                             
                 backend: kv_default                                                                                    
                 namespace: vector_io::faiss                                                                            
             provider_id: faiss                                                                                         
             provider_type: inline::faiss                                                                               
           - config:                                                                                                    
               db_path: /Users/ianmiller/.llama/distributions/starter/sqlite_vec.db                                     
               persistence:                                                                                             
                 backend: kv_default                                                                                    
                 namespace: vector_io::sqlite_vec                                                                       
             provider_id: sqlite-vec                                                                                    
             provider_type: inline::sqlite-vec                                                                          
         registered_resources:                                                                                          
           benchmarks: []                                                                                               
           datasets: []                                                                                                 
           models: []                                                                                                   
           scoring_fns: []                                                                                              
           shields: []                                                                                                  
           tool_groups:                                                                                                 
           - provider_id: tavily-search                                                                                 
             toolgroup_id: builtin::websearch                                                                           
           - provider_id: rag-runtime                                                                                   
             toolgroup_id: builtin::rag                                                                                 
           vector_stores: []                                                                                            
         server:                                                                                                        
           port: 8321                                                                                                   
         storage:                                                                                                       
           backends:                                                                                                    
             kv_default:                                                                                                
               db_path: /Users/ianmiller/.llama/distributions/starter/kvstore.db                                        
               type: kv_sqlite                                                                                          
             sql_default:                                                                                               
               db_path: /Users/ianmiller/.llama/distributions/starter/sql_store.db                                      
               type: sql_sqlite                                                                                         
           stores:                                                                                                      
             conversations:                                                                                             
               backend: sql_default                                                                                     
               table_name: openai_conversations                                                                         
             inference:                                                                                                 
               backend: sql_default                                                                                     
               max_write_queue_size: 10000                                                                              
               num_writers: 4                                                                                           
               table_name: inference_store                                                                              
             metadata:                                                                                                  
               backend: kv_default                                                                                      
               namespace: registry                                                                                      
             prompts:                                                                                                   
               backend: kv_default                                                                                      
               namespace: prompts                                                                                       
         telemetry:                                                                                                     
           enabled: true                                                                                                
         vector_stores:                                                                                                 
           default_embedding_model:                                                                                     
             model_id: nomic-ai/nomic-embed-text-v1.5                                                                   
             provider_id: sentence-transformers                                                                         
           default_provider_id: faiss                                                                                   
         version: 2                                                                                                     
                                                                                                                        
INFO     2025-10-23 15:36:20,032 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue        
         disabled for SQLite to avoid concurrency issues                                                                
WARNING  2025-10-23 15:36:20,422 llama_stack.providers.inline.telemetry.meta_reference.telemetry:84 telemetry:          
         OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry                                                     
INFO     2025-10-23 15:36:22,379 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils:               
         OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models                                           
INFO     2025-10-23 15:36:22,703 uvicorn.error:84 uncategorized: Started server process [17328]                         
INFO     2025-10-23 15:36:22,704 uvicorn.error:48 uncategorized: Waiting for application startup.                       
INFO     2025-10-23 15:36:22,706 llama_stack.core.server.server:179 core::server: Starting up Llama Stack server        
         (version: 0.3.0)                                                                                               
INFO     2025-10-23 15:36:22,707 llama_stack.core.stack:470 core: starting registry refresh task                        
INFO     2025-10-23 15:36:22,708 uvicorn.error:62 uncategorized: Application startup complete.                          
INFO     2025-10-23 15:36:22,708 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321      
         (Press CTRL+C to quit)   
```
As you can see, prompts are attached to stores in config

Testing:

1. Create prompt:

```
curl -X POST http://localhost:8321/v1/prompts \                 
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.",
    "variables": ["name", "company", "role", "tone"]
  }'
```

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}%
`

2. Get prompt:

`curl -X GET
http://localhost:8321/v1/prompts/pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f`

`{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is
{{role}} at {{company}}. Remember, {{name}}, to be
{{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}%
`

3. Query sqlite KV storage to check created prompt:

```
sqlite> .mode column
sqlite> .headers on
sqlite> SELECT * FROM kvstore WHERE key LIKE 'prompts:v1:%';
key                                                           value                                                         expiration
------------------------------------------------------------  ------------------------------------------------------------  ----------
prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e  {"prompt_id": "pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab            
163f:1                                                        5f6e163f", "prompt": "Hello {{name}}! You are working at {{c            
                                                              ompany}}. Your role is {{role}} at {{company}}. Remember, {{            
                                                              name}}, to be {{tone}}.", "version": 1, "variables": ["name"            
                                                              , "company", "role", "tone"], "is_default": false}                      

prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e  1                                                                       
163f:default                                                                                                                          
sqlite> 
```
2025-10-27 11:12:12 -07:00
..
common feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403) 2025-10-09 14:27:51 -07:00
containers refactor: replace default all-MiniLM-L6-v2 embedding model by nomic-embed-text-v1.5 in Llama Stack (#3183) 2025-10-14 10:44:20 -04:00
external feat(prompts): attach prompts to storage stores in run configs (#3893) 2025-10-27 11:12:12 -07:00
integration fix: Avoid BadRequestError due to invalid max_tokens (#3667) 2025-10-27 09:27:21 -07:00
unit feat(prompts): attach prompts to storage stores in run configs (#3893) 2025-10-27 11:12:12 -07:00
__init__.py refactor(test): introduce --stack-config and simplify options (#1404) 2025-03-05 17:02:02 -08:00
README.md feat(tests): introduce a test "suite" concept to encompass dirs, options (#3339) 2025-09-05 13:58:49 -07:00

There are two obvious types of tests:

Type Location Purpose
Unit tests/unit/ Fast, isolated component testing
Integration tests/integration/ End-to-end workflows with record-replay

Both have their place. For unit tests, it is important to create minimal mocks and instead rely more on "fakes". Mocks are too brittle. In either case, tests must be very fast and reliable.

Record-replay for integration tests

Testing AI applications end-to-end creates some challenges:

  • API costs accumulate quickly during development and CI
  • Non-deterministic responses make tests unreliable
  • Multiple providers require testing the same logic across different APIs

Our solution: Record real API responses once, replay them for fast, deterministic tests. This is better than mocking because AI APIs have complex response structures and streaming behavior. Mocks can miss edge cases that real APIs exhibit. A single test can exercise underlying APIs in multiple complex ways making it really hard to mock.

This gives you:

  • Cost control - No repeated API calls during development
  • Speed - Instant test execution with cached responses
  • Reliability - Consistent results regardless of external service state
  • Provider coverage - Same tests work across OpenAI, Anthropic, local models, etc.

Testing Quick Start

You can run the unit tests with:

uv run --group unit pytest -sv tests/unit/

For running integration tests, you must provide a few things:

  • A stack config. This is a pointer to a stack. You have a few ways to point to a stack:

    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • Any API keys you need to use should be set in the environment, or can be passed in with the --env option.

You can run the integration tests in replay mode with:

# Run all tests with existing recordings
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Re-recording tests

Local Re-recording (Manual Setup Required)

If you want to re-record tests locally, you can do so with:

LLAMA_STACK_TEST_INFERENCE_MODE=record \
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter -k "<appropriate test name>"

This will record new API responses and overwrite the existing recordings.


You must be careful when re-recording. CI workflows assume a specific setup for running the replay-mode tests. You must re-record the tests in the same way as the CI workflows. This means
- you need Ollama running and serving some specific models.
- you are using the `starter` distribution.

For easier re-recording without local setup, use the automated recording workflow:

# Record tests for specific test subdirectories
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents,inference"

# Record with vision tests enabled
./scripts/github/schedule-record-workflow.sh --test-suite vision

# Record with specific provider
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents" --test-provider vllm

This script:

  • 🚀 Runs in GitHub Actions - no local Ollama setup required
  • 🔍 Auto-detects your branch and associated PR
  • 🍴 Works from forks - handles repository context automatically
  • Commits recordings back to your branch

Prerequisites:

  • GitHub CLI: brew install gh && gh auth login
  • jq: brew install jq
  • Your branch pushed to a remote

Supported providers: vllm, ollama

Next Steps