llama-stack-mirror/llama_stack/apis/tools/rag_tool.py
Sébastien Han 9c8be89fb6
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 4s
Integration Tests / test-matrix (http, 3.13, inference) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (http, 3.12, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (http, 3.13, agents) (push) Failing after 11s
Integration Tests / test-matrix (http, 3.13, vector_io) (push) Failing after 8s
Integration Tests / test-matrix (http, 3.13, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 7s
Integration Tests / test-matrix (http, 3.13, tool_runtime) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.13, post_training) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.13, scoring) (push) Failing after 14s
Test Llama Stack Build / generate-matrix (push) Successful in 7s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 16s
Test Llama Stack Build / build-single-provider (push) Failing after 9s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 7s
Python Package Build Test / build (3.13) (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Integration Tests / test-matrix (http, 3.13, datasets) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 12s
Integration Tests / test-matrix (http, 3.13, providers) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 11s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 6s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 6s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 41s
Python Package Build Test / build (3.12) (push) Failing after 33s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 36s
Test External Providers / test-external-providers (venv) (push) Failing after 31s
Pre-commit / pre-commit (push) Successful in 1m54s
chore: bump python supported version to 3.12 (#2475)
# What does this PR do?

The project now supports Python >= 3.12

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-24 09:22:04 +05:30

166 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Annotated, Any, Literal, Protocol
from pydantic import BaseModel, Field, field_validator
from typing_extensions import runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class RRFRanker(BaseModel):
"""
Reciprocal Rank Fusion (RRF) ranker configuration.
:param type: The type of ranker, always "rrf"
:param impact_factor: The impact factor for RRF scoring. Higher values give more weight to higher-ranked results.
Must be greater than 0. Default of 60 is from the original RRF paper (Cormack et al., 2009).
"""
type: Literal["rrf"] = "rrf"
impact_factor: float = Field(default=60.0, gt=0.0) # default of 60 for optimal performance
@json_schema_type
class WeightedRanker(BaseModel):
"""
Weighted ranker configuration that combines vector and keyword scores.
:param type: The type of ranker, always "weighted"
:param alpha: Weight factor between 0 and 1.
0 means only use keyword scores,
1 means only use vector scores,
values in between blend both scores.
"""
type: Literal["weighted"] = "weighted"
alpha: float = Field(
default=0.5,
ge=0.0,
le=1.0,
description="Weight factor between 0 and 1. 0 means only keyword scores, 1 means only vector scores.",
)
Ranker = Annotated[
RRFRanker | WeightedRanker,
Field(discriminator="type"),
]
register_schema(Ranker, name="Ranker")
@json_schema_type
class RAGDocument(BaseModel):
"""
A document to be used for document ingestion in the RAG Tool.
:param document_id: The unique identifier for the document.
:param content: The content of the document.
:param mime_type: The MIME type of the document.
:param metadata: Additional metadata for the document.
"""
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryResult(BaseModel):
content: InterleavedContent | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryGenerator(Enum):
default = "default"
llm = "llm"
custom = "custom"
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
type: Literal["default"] = "default"
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
type: Literal["llm"] = "llm"
model: str
template: str
RAGQueryGeneratorConfig = Annotated[
DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig,
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@json_schema_type
class RAGQueryConfig(BaseModel):
"""
Configuration for the RAG query generation.
:param query_generator_config: Configuration for the query generator.
:param max_tokens_in_context: Maximum number of tokens in the context.
:param max_chunks: Maximum number of chunks to retrieve.
:param chunk_template: Template for formatting each retrieved chunk in the context.
Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict).
Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n"
:param mode: Search mode for retrieval—either "vector", "keyword", or "hybrid". Default "vector".
:param ranker: Configuration for the ranker to use in hybrid search. Defaults to RRF ranker.
"""
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
max_tokens_in_context: int = 4096
max_chunks: int = 5
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
mode: str | None = None
ranker: Ranker | None = Field(default=None) # Only used for hybrid mode
@field_validator("chunk_template")
def validate_chunk_template(cls, v: str) -> str:
if "{chunk.content}" not in v:
raise ValueError("chunk_template must contain {chunk.content}")
if "{index}" not in v:
raise ValueError("chunk_template must contain {index}")
if len(v) == 0:
raise ValueError("chunk_template must not be empty")
return v
@runtime_checkable
@trace_protocol
class RAGToolRuntime(Protocol):
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST")
async def insert(
self,
documents: list[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
async def query(
self,
content: InterleavedContent,
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
...