mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-09 11:20:58 +00:00
205 lines
5.4 KiB
Python
205 lines
5.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
|
|
@json_schema_type
|
|
class GenerationInput(BaseModel):
|
|
messages: List[Message]
|
|
|
|
|
|
@json_schema_type
|
|
class GenerationOutput(BaseModel):
|
|
completion_message: str
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class PostprocessedGeneration(BaseModel):
|
|
completion_message: str
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
# A sample (row) from dataset
|
|
TDatasetSample = TypeVar("TDatasetSample")
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetSample(BaseModel): ...
|
|
|
|
|
|
@json_schema_type
|
|
class DictSample(DatasetSample):
|
|
data: Dict[str, Any]
|
|
|
|
|
|
# A sample (row) from evals intermediate dataset after preprocessing
|
|
TPreprocessedSample = TypeVar("TPreprocessedSample")
|
|
|
|
|
|
@json_schema_type
|
|
class PreprocessedSample(DatasetSample):
|
|
generation_input: GenerationInput
|
|
|
|
|
|
# A sample (row) from evals intermediate dataset after inference
|
|
TGenerationResponseSample = TypeVar("TGenerationResponseSample")
|
|
|
|
|
|
@json_schema_type
|
|
class GenerationResponseSample(DatasetSample):
|
|
generation_output: GenerationOutput
|
|
|
|
|
|
# A sample (row) for prepared evals dataset ready for scoring
|
|
TScorerInputSample = TypeVar("TScorerInputSample")
|
|
|
|
|
|
@json_schema_type
|
|
class ScorerInputSample(DatasetSample):
|
|
"""
|
|
A dataset is required to have the following columns to be used for scoring:
|
|
- generated_answer: str
|
|
- expected_answer: Union[str, List[str]]
|
|
- (optional) input_query: str
|
|
- (optional) generation_output: PostprocessedGeneration
|
|
"""
|
|
|
|
generated_answer: str
|
|
expected_answer: Union[str, List[str]]
|
|
input_query: Optional[str] = None
|
|
generation_output: Optional[PostprocessedGeneration] = None
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetType(Enum):
|
|
custom = "custom"
|
|
huggingface = "huggingface"
|
|
|
|
|
|
@json_schema_type
|
|
class HuggingfaceDatasetDef(BaseModel):
|
|
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
|
|
identifier: str = Field(
|
|
description="A unique name for the dataset",
|
|
)
|
|
dataset_path: str = Field(
|
|
description="The name of the dataset into HF (e.g. meta-llama/Llama-3.1-8B-Instruct-evals)",
|
|
)
|
|
dataset_name: Optional[str] = Field(
|
|
description="The name of the dataset into HF (e.g. Llama-3.1-8B-Instruct-evals__ifeval__strict__details)",
|
|
)
|
|
rename_columns_map: Optional[Dict[str, str]] = Field(
|
|
description="A map of column names to rename to fit the schema of eval dataset for scoring",
|
|
default=None,
|
|
)
|
|
kwargs: Dict[str, Any] = Field(
|
|
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
|
|
default_factory=dict,
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class CustomDatasetDef(BaseModel):
|
|
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
|
|
identifier: str = Field(
|
|
description="A unique name for the dataset",
|
|
)
|
|
url: str = Field(
|
|
description="The URL to the dataset",
|
|
)
|
|
rename_columns_map: Optional[Dict[str, str]] = Field(
|
|
description="A map of column names to rename to fit the schema of eval dataset for scoring",
|
|
default=None,
|
|
)
|
|
|
|
|
|
DatasetDef = Annotated[
|
|
Union[
|
|
HuggingfaceDatasetDef,
|
|
CustomDatasetDef,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
class DatasetsResponseStatus(Enum):
|
|
success = "success"
|
|
fail = "fail"
|
|
|
|
|
|
@json_schema_type
|
|
class CreateDatasetResponse(BaseModel):
|
|
status: DatasetsResponseStatus = Field(
|
|
description="Return status of the dataset creation",
|
|
)
|
|
msg: Optional[str] = None
|
|
|
|
|
|
@json_schema_type
|
|
class DeleteDatasetResponse(BaseModel):
|
|
status: DatasetsResponseStatus = Field(
|
|
description="Return status of the dataset creation",
|
|
)
|
|
msg: Optional[str] = None
|
|
|
|
|
|
class BaseDataset(ABC, Generic[TDatasetSample]):
|
|
def __init__(self) -> None:
|
|
self.type: str = self.__class__.__name__
|
|
|
|
@property
|
|
@abstractmethod
|
|
def dataset_id(self) -> str:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __iter__(self) -> Iterator[TDatasetSample]:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __str__(self) -> str:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __len__(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def load(self) -> None:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class Datasets(Protocol):
|
|
@webmethod(route="/datasets/create")
|
|
async def create_dataset(
|
|
self,
|
|
dataset_def: DatasetDef,
|
|
) -> CreateDatasetResponse: ...
|
|
|
|
@webmethod(route="/datasets/get", method="GET")
|
|
async def get_dataset(
|
|
self,
|
|
dataset_identifier: str,
|
|
) -> Optional[DatasetDef]: ...
|
|
|
|
@webmethod(route="/datasets/delete")
|
|
async def delete_dataset(
|
|
self,
|
|
dataset_identifier: str,
|
|
) -> DeleteDatasetResponse: ...
|
|
|
|
@webmethod(route="/datasets/list", method="GET")
|
|
async def list_datasets(self) -> List[DatasetDef]: ...
|