mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
- Fixed mypy type error in MongoDB aggregate pipeline - Auto-formatted code with ruff - Generated provider documentation - Applied formatting to YAML files
268 lines
8.2 KiB
Text
268 lines
8.2 KiB
Text
---
|
|
description: |
|
|
[MongoDB Atlas](https://www.mongodb.com/products/platform/atlas-vector-search) is a remote vector database provider for Llama Stack. It
|
|
uses MongoDB Atlas Vector Search to store and query vectors in the cloud.
|
|
That means you get enterprise-grade vector search with MongoDB's scalability and reliability.
|
|
|
|
## Features
|
|
|
|
- Cloud-native vector search with MongoDB Atlas
|
|
- Fully integrated with Llama Stack
|
|
- Enterprise-grade security and scalability
|
|
- Supports multiple search modes: vector, keyword, and hybrid search
|
|
- Built-in metadata filtering and text search capabilities
|
|
- Automatic index management
|
|
|
|
## Search Modes
|
|
|
|
MongoDB Atlas Vector Search supports three different search modes:
|
|
|
|
### Vector Search
|
|
Vector search uses MongoDB's `$vectorSearch` aggregation stage to perform semantic similarity search using embedding vectors.
|
|
|
|
```python
|
|
# Vector search example
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="What is machine learning?",
|
|
search_mode="vector",
|
|
max_num_results=5,
|
|
)
|
|
```
|
|
|
|
### Keyword Search
|
|
Keyword search uses MongoDB's text search capabilities with full-text indexes to find chunks containing specific terms.
|
|
|
|
```python
|
|
# Keyword search example
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="Python programming language",
|
|
search_mode="keyword",
|
|
max_num_results=5,
|
|
)
|
|
```
|
|
|
|
### Hybrid Search
|
|
Hybrid search combines both vector and keyword search methods using configurable reranking algorithms.
|
|
|
|
```python
|
|
# Hybrid search with RRF ranker (default)
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="neural networks in Python",
|
|
search_mode="hybrid",
|
|
max_num_results=5,
|
|
)
|
|
|
|
# Hybrid search with weighted ranker
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="neural networks in Python",
|
|
search_mode="hybrid",
|
|
max_num_results=5,
|
|
ranking_options={
|
|
"ranker": {
|
|
"type": "weighted",
|
|
"alpha": 0.7, # 70% vector search, 30% keyword search
|
|
}
|
|
},
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
To use MongoDB Atlas in your Llama Stack project, follow these steps:
|
|
|
|
1. Create a MongoDB Atlas cluster with Vector Search enabled
|
|
2. Install the necessary dependencies
|
|
3. Configure your Llama Stack project to use MongoDB
|
|
4. Start storing and querying vectors
|
|
|
|
## Configuration
|
|
|
|
### Environment Variables
|
|
Set up the following environment variable for your MongoDB Atlas connection:
|
|
|
|
```bash
|
|
export MONGODB_CONNECTION_STRING="mongodb+srv://username:password@cluster.mongodb.net/?retryWrites=true&w=majority&appName=llama-stack"
|
|
```
|
|
|
|
### Configuration Example
|
|
|
|
```yaml
|
|
vector_io:
|
|
- provider_id: mongodb_atlas
|
|
provider_type: remote::mongodb
|
|
config:
|
|
connection_string: "${env.MONGODB_CONNECTION_STRING}"
|
|
database_name: "llama_stack"
|
|
index_name: "vector_index"
|
|
similarity_metric: "cosine"
|
|
```
|
|
|
|
## Installation
|
|
|
|
You can install the MongoDB Python driver using pip:
|
|
|
|
```bash
|
|
pip install pymongo
|
|
```
|
|
|
|
## Documentation
|
|
|
|
See [MongoDB Atlas Vector Search documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/) for more details about MongoDB Atlas Vector Search.
|
|
|
|
For general MongoDB documentation, visit [MongoDB Documentation](https://docs.mongodb.com/).
|
|
sidebar_label: Remote - Mongodb
|
|
title: remote::mongodb
|
|
---
|
|
|
|
# remote::mongodb
|
|
|
|
## Description
|
|
|
|
|
|
[MongoDB Atlas](https://www.mongodb.com/products/platform/atlas-vector-search) is a remote vector database provider for Llama Stack. It
|
|
uses MongoDB Atlas Vector Search to store and query vectors in the cloud.
|
|
That means you get enterprise-grade vector search with MongoDB's scalability and reliability.
|
|
|
|
## Features
|
|
|
|
- Cloud-native vector search with MongoDB Atlas
|
|
- Fully integrated with Llama Stack
|
|
- Enterprise-grade security and scalability
|
|
- Supports multiple search modes: vector, keyword, and hybrid search
|
|
- Built-in metadata filtering and text search capabilities
|
|
- Automatic index management
|
|
|
|
## Search Modes
|
|
|
|
MongoDB Atlas Vector Search supports three different search modes:
|
|
|
|
### Vector Search
|
|
Vector search uses MongoDB's `$vectorSearch` aggregation stage to perform semantic similarity search using embedding vectors.
|
|
|
|
```python
|
|
# Vector search example
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="What is machine learning?",
|
|
search_mode="vector",
|
|
max_num_results=5,
|
|
)
|
|
```
|
|
|
|
### Keyword Search
|
|
Keyword search uses MongoDB's text search capabilities with full-text indexes to find chunks containing specific terms.
|
|
|
|
```python
|
|
# Keyword search example
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="Python programming language",
|
|
search_mode="keyword",
|
|
max_num_results=5,
|
|
)
|
|
```
|
|
|
|
### Hybrid Search
|
|
Hybrid search combines both vector and keyword search methods using configurable reranking algorithms.
|
|
|
|
```python
|
|
# Hybrid search with RRF ranker (default)
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="neural networks in Python",
|
|
search_mode="hybrid",
|
|
max_num_results=5,
|
|
)
|
|
|
|
# Hybrid search with weighted ranker
|
|
search_response = client.vector_stores.search(
|
|
vector_store_id=vector_store.id,
|
|
query="neural networks in Python",
|
|
search_mode="hybrid",
|
|
max_num_results=5,
|
|
ranking_options={
|
|
"ranker": {
|
|
"type": "weighted",
|
|
"alpha": 0.7, # 70% vector search, 30% keyword search
|
|
}
|
|
},
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
To use MongoDB Atlas in your Llama Stack project, follow these steps:
|
|
|
|
1. Create a MongoDB Atlas cluster with Vector Search enabled
|
|
2. Install the necessary dependencies
|
|
3. Configure your Llama Stack project to use MongoDB
|
|
4. Start storing and querying vectors
|
|
|
|
## Configuration
|
|
|
|
### Environment Variables
|
|
Set up the following environment variable for your MongoDB Atlas connection:
|
|
|
|
```bash
|
|
export MONGODB_CONNECTION_STRING="mongodb+srv://username:password@cluster.mongodb.net/?retryWrites=true&w=majority&appName=llama-stack"
|
|
```
|
|
|
|
### Configuration Example
|
|
|
|
```yaml
|
|
vector_io:
|
|
- provider_id: mongodb_atlas
|
|
provider_type: remote::mongodb
|
|
config:
|
|
connection_string: "${env.MONGODB_CONNECTION_STRING}"
|
|
database_name: "llama_stack"
|
|
index_name: "vector_index"
|
|
similarity_metric: "cosine"
|
|
```
|
|
|
|
## Installation
|
|
|
|
You can install the MongoDB Python driver using pip:
|
|
|
|
```bash
|
|
pip install pymongo
|
|
```
|
|
|
|
## Documentation
|
|
|
|
See [MongoDB Atlas Vector Search documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/) for more details about MongoDB Atlas Vector Search.
|
|
|
|
For general MongoDB documentation, visit [MongoDB Documentation](https://docs.mongodb.com/).
|
|
|
|
|
|
## Configuration
|
|
|
|
| Field | Type | Required | Default | Description |
|
|
|-------|------|----------|---------|-------------|
|
|
| `connection_string` | `<class 'str'>` | No | | MongoDB Atlas connection string (e.g., mongodb+srv://user:pass@cluster.mongodb.net/) |
|
|
| `database_name` | `<class 'str'>` | No | llama_stack | Database name to use for vector collections |
|
|
| `index_name` | `<class 'str'>` | No | vector_index | Name of the vector search index |
|
|
| `path_field` | `<class 'str'>` | No | embedding | Field name for storing embeddings |
|
|
| `similarity_metric` | `<class 'str'>` | No | cosine | Similarity metric: cosine, euclidean, or dotProduct |
|
|
| `max_pool_size` | `<class 'int'>` | No | 100 | Maximum connection pool size |
|
|
| `timeout_ms` | `<class 'int'>` | No | 30000 | Connection timeout in milliseconds |
|
|
| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend for metadata storage |
|
|
|
|
## Sample Configuration
|
|
|
|
```yaml
|
|
connection_string: ${env.MONGODB_CONNECTION_STRING:=}
|
|
database_name: ${env.MONGODB_DATABASE_NAME:=llama_stack}
|
|
index_name: ${env.MONGODB_INDEX_NAME:=vector_index}
|
|
path_field: ${env.MONGODB_PATH_FIELD:=embedding}
|
|
similarity_metric: ${env.MONGODB_SIMILARITY_METRIC:=cosine}
|
|
max_pool_size: ${env.MONGODB_MAX_POOL_SIZE:=100}
|
|
timeout_ms: ${env.MONGODB_TIMEOUT_MS:=30000}
|
|
persistence:
|
|
namespace: vector_io::mongodb_atlas
|
|
backend: kv_default
|
|
```
|