llama-stack-mirror/llama_stack/cli/model/safety_models.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

64 lines
2.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.models.llama.sku_list import LlamaDownloadInfo
from llama_stack.models.llama.sku_types import CheckpointQuantizationFormat
class PromptGuardModel(BaseModel):
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
model_id: str
huggingface_repo: str
description: str = "Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
is_featured: bool = False
max_seq_length: int = 512
is_instruct_model: bool = False
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
arch_args: dict[str, Any] = Field(default_factory=dict)
def descriptor(self) -> str:
return self.model_id
model_config = ConfigDict(protected_namespaces=())
def prompt_guard_model_skus():
return [
PromptGuardModel(model_id="Prompt-Guard-86M", huggingface_repo="meta-llama/Prompt-Guard-86M"),
PromptGuardModel(
model_id="Llama-Prompt-Guard-2-86M",
huggingface_repo="meta-llama/Llama-Prompt-Guard-2-86M",
),
PromptGuardModel(
model_id="Llama-Prompt-Guard-2-22M",
huggingface_repo="meta-llama/Llama-Prompt-Guard-2-22M",
),
]
def prompt_guard_model_sku_map() -> dict[str, Any]:
return {model.model_id: model for model in prompt_guard_model_skus()}
def prompt_guard_download_info_map() -> dict[str, LlamaDownloadInfo]:
return {
model.model_id: LlamaDownloadInfo(
folder="Prompt-Guard" if model.model_id == "Prompt-Guard-86M" else model.model_id,
files=[
"model.safetensors",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
],
pth_size=1,
)
for model in prompt_guard_model_skus()
}