llama-stack-mirror/llama_stack/distribution/distribution.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

189 lines
6.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import glob
import importlib
import os
from typing import Any
import yaml
from pydantic import BaseModel
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
InlineProviderSpec,
ProviderSpec,
remote_provider_spec,
)
logger = get_logger(name=__name__, category="core")
def stack_apis() -> list[Api]:
return list(Api)
class AutoRoutedApiInfo(BaseModel):
routing_table_api: Api
router_api: Api
def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]:
return [
AutoRoutedApiInfo(
routing_table_api=Api.models,
router_api=Api.inference,
),
AutoRoutedApiInfo(
routing_table_api=Api.shields,
router_api=Api.safety,
),
AutoRoutedApiInfo(
routing_table_api=Api.vector_dbs,
router_api=Api.vector_io,
),
AutoRoutedApiInfo(
routing_table_api=Api.datasets,
router_api=Api.datasetio,
),
AutoRoutedApiInfo(
routing_table_api=Api.scoring_functions,
router_api=Api.scoring,
),
AutoRoutedApiInfo(
routing_table_api=Api.benchmarks,
router_api=Api.eval,
),
AutoRoutedApiInfo(
routing_table_api=Api.tool_groups,
router_api=Api.tool_runtime,
),
]
def providable_apis() -> list[Api]:
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
def _load_remote_provider_spec(spec_data: dict[str, Any], api: Api) -> ProviderSpec:
adapter = AdapterSpec(**spec_data["adapter"])
spec = remote_provider_spec(
api=api,
adapter=adapter,
api_dependencies=[Api(dep) for dep in spec_data.get("api_dependencies", [])],
)
return spec
def _load_inline_provider_spec(spec_data: dict[str, Any], api: Api, provider_name: str) -> ProviderSpec:
spec = InlineProviderSpec(
api=api,
provider_type=f"inline::{provider_name}",
pip_packages=spec_data.get("pip_packages", []),
module=spec_data["module"],
config_class=spec_data["config_class"],
api_dependencies=[Api(dep) for dep in spec_data.get("api_dependencies", [])],
optional_api_dependencies=[Api(dep) for dep in spec_data.get("optional_api_dependencies", [])],
provider_data_validator=spec_data.get("provider_data_validator"),
container_image=spec_data.get("container_image"),
)
return spec
def get_provider_registry(
config=None,
) -> dict[Api, dict[str, ProviderSpec]]:
"""Get the provider registry, optionally including external providers.
This function loads both built-in providers and external providers from YAML files.
External providers are loaded from a directory structure like:
providers.d/
remote/
inference/
custom_ollama.yaml
vllm.yaml
vector_io/
qdrant.yaml
safety/
llama-guard.yaml
inline/
inference/
custom_ollama.yaml
vllm.yaml
vector_io/
qdrant.yaml
safety/
llama-guard.yaml
Args:
config: Optional object containing the external providers directory path
Returns:
A dictionary mapping APIs to their available providers
Raises:
FileNotFoundError: If the external providers directory doesn't exist
ValueError: If any provider spec is invalid
"""
ret: dict[Api, dict[str, ProviderSpec]] = {}
for api in providable_apis():
name = api.name.lower()
logger.debug(f"Importing module {name}")
try:
module = importlib.import_module(f"llama_stack.providers.registry.{name}")
ret[api] = {a.provider_type: a for a in module.available_providers()}
except ImportError as e:
logger.warning(f"Failed to import module {name}: {e}")
# Check if config has the external_providers_dir attribute
if config and hasattr(config, "external_providers_dir") and config.external_providers_dir:
external_providers_dir = os.path.abspath(config.external_providers_dir)
if not os.path.exists(external_providers_dir):
raise FileNotFoundError(f"External providers directory not found: {external_providers_dir}")
logger.info(f"Loading external providers from {external_providers_dir}")
for api in providable_apis():
api_name = api.name.lower()
# Process both remote and inline providers
for provider_type in ["remote", "inline"]:
api_dir = os.path.join(external_providers_dir, provider_type, api_name)
if not os.path.exists(api_dir):
logger.debug(f"No {provider_type} provider directory found for {api_name}")
continue
# Look for provider spec files in the API directory
for spec_path in glob.glob(os.path.join(api_dir, "*.yaml")):
provider_name = os.path.splitext(os.path.basename(spec_path))[0]
logger.info(f"Loading {provider_type} provider spec from {spec_path}")
try:
with open(spec_path) as f:
spec_data = yaml.safe_load(f)
if provider_type == "remote":
spec = _load_remote_provider_spec(spec_data, api)
provider_type_key = f"remote::{provider_name}"
else:
spec = _load_inline_provider_spec(spec_data, api, provider_name)
provider_type_key = f"inline::{provider_name}"
logger.info(f"Loaded {provider_type} provider spec for {provider_type_key} from {spec_path}")
if provider_type_key in ret[api]:
logger.warning(f"Overriding already registered provider {provider_type_key} for {api.name}")
ret[api][provider_type_key] = spec
except yaml.YAMLError as yaml_err:
logger.error(f"Failed to parse YAML file {spec_path}: {yaml_err}")
raise yaml_err
except Exception as e:
logger.error(f"Failed to load provider spec from {spec_path}: {e}")
raise e
return ret