llama-stack-mirror/llama_stack/distribution/stack.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

293 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import importlib.resources
import os
import re
import tempfile
from typing import Any
import yaml
from llama_stack.apis.agents import Agents
from llama_stack.apis.batch_inference import BatchInference
from llama_stack.apis.benchmarks import Benchmarks
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.providers import Providers
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDBs
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.datatypes import Provider, StackRunConfig
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.inspect import DistributionInspectConfig, DistributionInspectImpl
from llama_stack.distribution.providers import ProviderImpl, ProviderImplConfig
from llama_stack.distribution.resolver import ProviderRegistry, resolve_impls
from llama_stack.distribution.store.registry import create_dist_registry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
logger = get_logger(name=__name__, category="core")
class LlamaStack(
Providers,
VectorDBs,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
VectorIO,
Eval,
Benchmarks,
Scoring,
ScoringFunctions,
DatasetIO,
Models,
Shields,
Inspect,
ToolGroups,
ToolRuntime,
RAGToolRuntime,
Files,
):
pass
RESOURCES = [
("models", Api.models, "register_model", "list_models"),
("shields", Api.shields, "register_shield", "list_shields"),
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
("datasets", Api.datasets, "register_dataset", "list_datasets"),
(
"scoring_fns",
Api.scoring_functions,
"register_scoring_function",
"list_scoring_functions",
),
("benchmarks", Api.benchmarks, "register_benchmark", "list_benchmarks"),
("tool_groups", Api.tool_groups, "register_tool_group", "list_tool_groups"),
]
async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
for rsrc, api, register_method, list_method in RESOURCES:
objects = getattr(run_config, rsrc)
if api not in impls:
continue
method = getattr(impls[api], register_method)
for obj in objects:
# we want to maintain the type information in arguments to method.
# instead of method(**obj.model_dump()), which may convert a typed attr to a dict,
# we use model_dump() to find all the attrs and then getattr to get the still typed value.
await method(**{k: getattr(obj, k) for k in obj.model_dump().keys()})
method = getattr(impls[api], list_method)
response = await method()
objects_to_process = response.data if hasattr(response, "data") else response
for obj in objects_to_process:
logger.debug(
f"{rsrc.capitalize()}: {obj.identifier} served by {obj.provider_id}",
)
class EnvVarError(Exception):
def __init__(self, var_name: str, path: str = ""):
self.var_name = var_name
self.path = path
super().__init__(f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}")
def replace_env_vars(config: Any, path: str = "") -> Any:
if isinstance(config, dict):
result = {}
for k, v in config.items():
try:
result[k] = replace_env_vars(v, f"{path}.{k}" if path else k)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, list):
result = []
for i, v in enumerate(config):
try:
result.append(replace_env_vars(v, f"{path}[{i}]"))
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, str):
# Updated pattern to support both default values (:) and conditional values (+)
pattern = r"\${env\.([A-Z0-9_]+)(?:([:\+])([^}]*))?}"
def get_env_var(match):
env_var = match.group(1)
operator = match.group(2) # ':' for default, '+' for conditional
value_expr = match.group(3)
env_value = os.environ.get(env_var)
if operator == ":": # Default value syntax: ${env.FOO:default}
if not env_value:
if value_expr is None:
raise EnvVarError(env_var, path)
else:
value = value_expr
else:
value = env_value
elif operator == "+": # Conditional value syntax: ${env.FOO+value_if_set}
if env_value:
value = value_expr
else:
# If env var is not set, return empty string for the conditional case
value = ""
else: # No operator case: ${env.FOO}
if not env_value:
raise EnvVarError(env_var, path)
value = env_value
# expand "~" from the values
return os.path.expanduser(value)
try:
return re.sub(pattern, get_env_var, config)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return config
def validate_env_pair(env_pair: str) -> tuple[str, str]:
"""Validate and split an environment variable key-value pair."""
try:
key, value = env_pair.split("=", 1)
key = key.strip()
if not key:
raise ValueError(f"Empty key in environment variable pair: {env_pair}")
if not all(c.isalnum() or c == "_" for c in key):
raise ValueError(f"Key must contain only alphanumeric characters and underscores: {key}")
return key, value
except ValueError as e:
raise ValueError(
f"Invalid environment variable format '{env_pair}': {str(e)}. Expected format: KEY=value"
) from e
def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConfig) -> None:
"""Add internal implementations (inspect and providers) to the implementations dictionary.
Args:
impls: Dictionary of API implementations
run_config: Stack run configuration
"""
inspect_impl = DistributionInspectImpl(
DistributionInspectConfig(run_config=run_config),
deps=impls,
)
impls[Api.inspect] = inspect_impl
providers_impl = ProviderImpl(
ProviderImplConfig(run_config=run_config),
deps=impls,
)
impls[Api.providers] = providers_impl
# Produces a stack of providers for the given run config. Not all APIs may be
# asked for in the run config.
async def construct_stack(
run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None
) -> dict[Api, Any]:
dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name)
impls = await resolve_impls(run_config, provider_registry or get_provider_registry(run_config), dist_registry)
# Add internal implementations after all other providers are resolved
add_internal_implementations(impls, run_config)
await register_resources(run_config, impls)
return impls
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
template_path = importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
with importlib.resources.as_file(template_path) as path:
if not path.exists():
raise ValueError(f"Template '{template}' not found at {template_path}")
run_config = yaml.safe_load(path.open())
return StackRunConfig(**replace_env_vars(run_config))
def run_config_from_adhoc_config_spec(
adhoc_config_spec: str, provider_registry: ProviderRegistry | None = None
) -> StackRunConfig:
"""
Create an adhoc distribution from a list of API providers.
The list should be of the form "api=provider", e.g. "inference=fireworks". If you have
multiple pairs, separate them with commas or semicolons, e.g. "inference=fireworks,safety=llama-guard,agents=meta-reference"
"""
api_providers = adhoc_config_spec.replace(";", ",").split(",")
provider_registry = provider_registry or get_provider_registry()
distro_dir = tempfile.mkdtemp()
provider_configs_by_api = {}
for api_provider in api_providers:
api_str, provider = api_provider.split("=")
api = Api(api_str)
providers_by_type = provider_registry[api]
provider_spec = providers_by_type.get(provider)
if not provider_spec:
provider_spec = providers_by_type.get(f"inline::{provider}")
if not provider_spec:
provider_spec = providers_by_type.get(f"remote::{provider}")
if not provider_spec:
raise ValueError(
f"Provider {provider} (or remote::{provider} or inline::{provider}) not found for API {api}"
)
# call method "sample_run_config" on the provider spec config class
provider_config_type = instantiate_class_type(provider_spec.config_class)
provider_config = replace_env_vars(provider_config_type.sample_run_config(__distro_dir__=distro_dir))
provider_configs_by_api[api_str] = [
Provider(
provider_id=provider,
provider_type=provider_spec.provider_type,
config=provider_config,
)
]
config = StackRunConfig(
image_name="distro-test",
apis=list(provider_configs_by_api.keys()),
providers=provider_configs_by_api,
)
return config