llama-stack-mirror/llama_stack/distribution/utils/prompt_for_config.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

282 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import inspect
import json
import logging
from enum import Enum
from typing import Annotated, Any, Literal, Union, get_args, get_origin
from pydantic import BaseModel
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefinedType
log = logging.getLogger(__name__)
def is_list_of_primitives(field_type):
"""Check if a field type is a List of primitive types."""
origin = get_origin(field_type)
if origin is list or origin is list:
args = get_args(field_type)
if len(args) == 1 and args[0] in (int, float, str, bool):
return True
return False
def is_basemodel_without_fields(typ):
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) == 0
def can_recurse(typ):
return inspect.isclass(typ) and issubclass(typ, BaseModel) and len(typ.__fields__) > 0
def get_literal_values(field):
"""Extract literal values from a field if it's a Literal type."""
if get_origin(field.annotation) is Literal:
return get_args(field.annotation)
return None
def is_optional(field_type):
"""Check if a field type is Optional."""
return get_origin(field_type) is Union and type(None) in get_args(field_type)
def get_non_none_type(field_type):
"""Get the non-None type from an Optional type."""
return next(arg for arg in get_args(field_type) if arg is not type(None))
def manually_validate_field(model: type[BaseModel], field_name: str, value: Any):
validators = model.__pydantic_decorators__.field_validators
for _name, validator in validators.items():
if field_name in validator.info.fields:
validator.func(value)
return value
def is_discriminated_union(typ) -> bool:
if isinstance(typ, FieldInfo):
return typ.discriminator
else:
if get_origin(typ) is not Annotated:
return False
args = get_args(typ)
return len(args) >= 2 and args[1].discriminator
def prompt_for_discriminated_union(
field_name,
typ,
existing_value,
):
if isinstance(typ, FieldInfo):
inner_type = typ.annotation
discriminator = typ.discriminator
default_value = typ.default
else:
args = get_args(typ)
inner_type = args[0]
discriminator = args[1].discriminator
default_value = args[1].default
union_types = get_args(inner_type)
# Find the discriminator field in each union type
type_map = {}
for t in union_types:
disc_field = t.__fields__[discriminator]
literal_values = get_literal_values(disc_field)
if literal_values:
for value in literal_values:
type_map[value] = t
while True:
prompt = f"Enter `{discriminator}` for {field_name} (options: {', '.join(type_map.keys())})"
if default_value is not None:
prompt += f" (default: {default_value})"
discriminator_value = input(f"{prompt}: ")
if discriminator_value == "" and default_value is not None:
discriminator_value = default_value
if discriminator_value in type_map:
chosen_type = type_map[discriminator_value]
log.info(f"\nConfiguring {chosen_type.__name__}:")
if existing_value and (getattr(existing_value, discriminator) != discriminator_value):
existing_value = None
sub_config = prompt_for_config(chosen_type, existing_value)
# Set the discriminator field in the sub-config
setattr(sub_config, discriminator, discriminator_value)
return sub_config
else:
log.error(f"Invalid {discriminator}. Please try again.")
# This is somewhat elaborate, but does not purport to be comprehensive in any way.
# We should add handling for the most common cases to tide us over.
#
# doesn't support List[nested_class] yet or Dicts of any kind. needs a bunch of
# unit tests for coverage.
def prompt_for_config(config_type: type[BaseModel], existing_config: BaseModel | None = None) -> BaseModel:
"""
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
Args:
config_type: A Pydantic BaseModel class representing the configuration structure.
Returns:
An instance of the config_type with user-provided values.
"""
config_data = {}
for field_name, field in config_type.__fields__.items():
field_type = field.annotation
existing_value = getattr(existing_config, field_name) if existing_config else None
if existing_value:
default_value = existing_value
else:
default_value = field.default if not isinstance(field.default, PydanticUndefinedType) else None
is_required = field.is_required
# Skip fields with Literal type
if get_origin(field_type) is Literal:
continue
# Skip fields with no type annotations
if is_basemodel_without_fields(field_type):
config_data[field_name] = field_type()
continue
if inspect.isclass(field_type) and issubclass(field_type, Enum):
prompt = f"Choose {field_name} (options: {', '.join(e.name for e in field_type)}):"
while True:
# this branch does not handle existing and default values yet
user_input = input(prompt + " ")
try:
value = field_type[user_input]
validated_value = manually_validate_field(config_type, field, value)
config_data[field_name] = validated_value
break
except KeyError:
log.error(f"Invalid choice. Please choose from: {', '.join(e.name for e in field_type)}")
continue
if is_discriminated_union(field):
config_data[field_name] = prompt_for_discriminated_union(field_name, field, existing_value)
continue
if is_optional(field_type) and can_recurse(get_non_none_type(field_type)):
prompt = f"Do you want to configure {field_name}? (y/n): "
if input(prompt).lower() == "n":
config_data[field_name] = None
continue
nested_type = get_non_none_type(field_type)
log.info(f"Entering sub-configuration for {field_name}:")
config_data[field_name] = prompt_for_config(nested_type, existing_value)
elif is_optional(field_type) and is_discriminated_union(get_non_none_type(field_type)):
prompt = f"Do you want to configure {field_name}? (y/n): "
if input(prompt).lower() == "n":
config_data[field_name] = None
continue
nested_type = get_non_none_type(field_type)
config_data[field_name] = prompt_for_discriminated_union(
field_name,
nested_type,
existing_value,
)
elif can_recurse(field_type):
log.info(f"\nEntering sub-configuration for {field_name}:")
config_data[field_name] = prompt_for_config(
field_type,
existing_value,
)
else:
prompt = f"Enter value for {field_name}"
if existing_value is not None:
prompt += f" (existing: {existing_value})"
elif default_value is not None:
prompt += f" (default: {default_value})"
if is_optional(field_type):
prompt += " (optional)"
elif is_required:
prompt += " (required)"
prompt += ": "
while True:
user_input = input(prompt)
if user_input == "":
if default_value is not None:
config_data[field_name] = default_value
break
elif is_optional(field_type) or not is_required:
config_data[field_name] = None
break
else:
log.error("This field is required. Please provide a value.")
continue
else:
try:
# Handle Optional types
if is_optional(field_type):
if user_input.lower() == "none":
value = None
else:
field_type = get_non_none_type(field_type)
value = user_input
# Handle List of primitives
elif is_list_of_primitives(field_type):
try:
value = json.loads(user_input)
if not isinstance(value, list):
raise ValueError("Input must be a JSON-encoded list")
element_type = get_args(field_type)[0]
value = [element_type(item) for item in value]
except json.JSONDecodeError:
log.error('Invalid JSON. Please enter a valid JSON-encoded list e.g., ["foo","bar"]')
continue
except ValueError as e:
log.error(f"{str(e)}")
continue
elif get_origin(field_type) is dict:
try:
value = json.loads(user_input)
if not isinstance(value, dict):
raise ValueError("Input must be a JSON-encoded dictionary")
except json.JSONDecodeError:
log.error("Invalid JSON. Please enter a valid JSON-encoded dict.")
continue
# Convert the input to the correct type
elif inspect.isclass(field_type) and issubclass(field_type, BaseModel):
# For nested BaseModels, we assume a dictionary-like string input
import ast
value = field_type(**ast.literal_eval(user_input))
else:
value = field_type(user_input)
except ValueError:
log.error(f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}")
continue
try:
# Validate the field using our manual validation function
validated_value = manually_validate_field(config_type, field_name, value)
config_data[field_name] = validated_value
break
except ValueError as e:
log.error(f"Validation error: {str(e)}")
return config_type(**config_data)