mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
371 lines
14 KiB
Python
371 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# top-level folder for each specific model found within the models/ directory at
|
|
# the top-level of this source tree.
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
from collections.abc import Callable, Generator
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from fairscale.nn.model_parallel.initialize import (
|
|
initialize_model_parallel,
|
|
model_parallel_is_initialized,
|
|
)
|
|
from termcolor import cprint
|
|
|
|
from ..checkpoint import maybe_reshard_state_dict
|
|
from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage, ToolPromptFormat
|
|
from .args import ModelArgs
|
|
from .chat_format import ChatFormat, LLMInput
|
|
from .model import Transformer
|
|
from .multimodal.model import CrossAttentionTransformer
|
|
from .tokenizer import Tokenizer
|
|
|
|
|
|
class Llama3:
|
|
@staticmethod
|
|
def build(
|
|
ckpt_dir: str,
|
|
max_seq_len: int,
|
|
max_batch_size: int,
|
|
world_size: int | None = None,
|
|
quantization_mode: QuantizationMode | None = None,
|
|
seed: int = 1,
|
|
device: str = "cuda",
|
|
):
|
|
device = torch.device(device)
|
|
if (
|
|
device.type == "cuda"
|
|
and not torch.cuda.is_available()
|
|
or device.type == "xpu"
|
|
and not torch.xpu.is_available()
|
|
):
|
|
raise RuntimeError(f"PyTorch backend for {device.type} device type is not available")
|
|
|
|
if not torch.distributed.is_initialized():
|
|
if device.type == "cuda":
|
|
torch.distributed.init_process_group("nccl")
|
|
else:
|
|
torch.distributed.init_process_group("gloo")
|
|
|
|
if not model_parallel_is_initialized():
|
|
if world_size is None:
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
initialize_model_parallel(world_size)
|
|
|
|
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
|
if device.type == "cuda":
|
|
torch.cuda.set_device(local_rank)
|
|
elif device.type == "xpu":
|
|
torch.xpu.set_device(local_rank)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
if local_rank > 0:
|
|
sys.stdout = open(os.devnull, "w")
|
|
|
|
start_time = time.time()
|
|
|
|
ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}"
|
|
print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})")
|
|
with open(Path(ckpt_dir) / "params.json") as f:
|
|
params = json.loads(f.read())
|
|
|
|
model_args: ModelArgs = ModelArgs(
|
|
max_seq_len=max_seq_len,
|
|
max_batch_size=max_batch_size,
|
|
**params,
|
|
)
|
|
tokenizer = Tokenizer.get_instance()
|
|
|
|
state_dict = maybe_reshard_state_dict(
|
|
ckpt_paths,
|
|
n_kv_heads=model_args.n_kv_heads if model_args.n_kv_heads else model_args.n_heads,
|
|
)
|
|
|
|
assert model_args.vocab_size == tokenizer.n_words
|
|
|
|
def build_model():
|
|
if model_args.vision_chunk_size > 0:
|
|
model = CrossAttentionTransformer(model_args)
|
|
model.setup_cache(model_args.max_batch_size, device=device, dtype=torch.get_default_dtype())
|
|
else:
|
|
model = Transformer(model_args)
|
|
return model
|
|
|
|
if quantization_mode == QuantizationMode.fp8_mixed or quantization_mode == QuantizationMode.int4_mixed:
|
|
from .quantization.loader import convert_to_quantized_model
|
|
|
|
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
|
model = build_model()
|
|
print("Loading state dict...")
|
|
model.load_state_dict(state_dict, strict=False)
|
|
print("Done...")
|
|
model = convert_to_quantized_model(model, ckpt_dir, quantization_mode, device=device)
|
|
torch.set_default_device(device)
|
|
else:
|
|
print(f"Setting default device to {device}")
|
|
if device.type == "cuda":
|
|
if torch.cuda.is_bf16_supported():
|
|
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
|
else:
|
|
torch.set_default_tensor_type(torch.cuda.Float16Tensor)
|
|
elif device.type == "xpu":
|
|
if torch.xpu.is_bf16_supported():
|
|
torch.set_default_tensor_type(torch.xpu.BFloat16Tensor)
|
|
else:
|
|
torch.set_default_tensor_type(torch.xpu.Float16Tensor)
|
|
|
|
model = build_model()
|
|
print("Loading state dict...")
|
|
model.load_state_dict(state_dict, strict=True)
|
|
model.to(device)
|
|
print("Done...")
|
|
|
|
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
|
|
|
return Llama3(model, tokenizer, model_args)
|
|
|
|
def __init__(
|
|
self,
|
|
model: Transformer | CrossAttentionTransformer,
|
|
tokenizer: Tokenizer,
|
|
args: ModelArgs,
|
|
):
|
|
self.args = args
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
self.formatter = ChatFormat(tokenizer)
|
|
|
|
@torch.inference_mode()
|
|
def generate(
|
|
self,
|
|
llm_inputs: list[LLMInput],
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
max_gen_len: int | None = None,
|
|
logprobs: bool = False,
|
|
echo: bool = False,
|
|
print_model_input: bool = False,
|
|
logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None,
|
|
) -> Generator[list[GenerationResult], None, None]:
|
|
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
|
max_gen_len = self.args.max_seq_len - 1
|
|
params = self.model.params
|
|
|
|
print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1"
|
|
if print_model_input:
|
|
for inp in llm_inputs:
|
|
tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in inp.tokens]
|
|
cprint(
|
|
"Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n",
|
|
"red",
|
|
)
|
|
prompt_tokens = [inp.tokens for inp in llm_inputs]
|
|
|
|
bsz = len(llm_inputs)
|
|
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
|
|
|
min_prompt_len = min(len(t) for t in prompt_tokens)
|
|
max_prompt_len = max(len(t) for t in prompt_tokens)
|
|
|
|
if max_prompt_len >= params.max_seq_len:
|
|
cprint(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", "red")
|
|
return
|
|
|
|
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
|
|
|
|
pad_id = self.tokenizer.pad_id
|
|
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
|
|
for k, t in enumerate(prompt_tokens):
|
|
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
|
|
if logprobs:
|
|
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
|
|
|
|
is_vision = not isinstance(self.model, Transformer)
|
|
if is_vision:
|
|
images = [inp.vision.images if inp.vision is not None else [] for inp in llm_inputs]
|
|
mask = [inp.vision.mask if inp.vision is not None else [] for inp in llm_inputs]
|
|
|
|
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
|
|
batch_images=images,
|
|
batch_masks=mask,
|
|
total_len=total_len,
|
|
device=tokens.device,
|
|
)
|
|
|
|
eos_reached = torch.tensor([False] * bsz)
|
|
input_text_mask = tokens != pad_id
|
|
|
|
if echo:
|
|
for i in range(max_prompt_len):
|
|
results = []
|
|
for j, t in enumerate(tokens[:, i]):
|
|
results.append(
|
|
GenerationResult(
|
|
token=t.item(),
|
|
text=self.tokenizer.decode([t.item()]),
|
|
source="input",
|
|
logprobs=(token_logprobs[j, i : i + 1].tolist() if logprobs else None),
|
|
batch_idx=j,
|
|
finished=False,
|
|
ignore_token=t.item() == pad_id,
|
|
)
|
|
)
|
|
yield results
|
|
|
|
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
|
|
|
|
prev_pos = 0
|
|
for cur_pos in range(min_prompt_len, total_len):
|
|
if is_vision:
|
|
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
|
|
text_only_inference = all(inp.vision is None for inp in llm_inputs)
|
|
logits = self.model.forward(
|
|
position_ids,
|
|
tokens,
|
|
cross_attention_masks,
|
|
full_text_row_masked_out_mask,
|
|
xattn_caches,
|
|
text_only_inference,
|
|
)
|
|
else:
|
|
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
|
|
|
if logits_processor is not None:
|
|
logits = logits_processor(tokens[:, :cur_pos], logits)
|
|
|
|
if temperature > 0:
|
|
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
|
|
next_token = sample_top_p(probs, top_p)
|
|
else:
|
|
next_token = torch.argmax(logits[:, -1], dim=-1)
|
|
|
|
next_token = next_token.reshape(-1)
|
|
# only replace token if prompt has already been generated
|
|
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
|
tokens[:, cur_pos] = next_token
|
|
|
|
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
|
if is_vision:
|
|
# the logits space (num_classes) is designed to never contain a media_token
|
|
# however our input token stream does contain them. we need to nuke them here
|
|
# or else the CUDA kernels will crash with an illegal memory access
|
|
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
|
|
masks = [target.eq(t) for t in vision_tokens]
|
|
if len(masks) > 1:
|
|
mask = torch.logical_or(*masks)
|
|
else:
|
|
mask = masks[0]
|
|
target[mask] = 0
|
|
|
|
if logprobs:
|
|
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
|
|
input=logits.transpose(1, 2),
|
|
target=target,
|
|
reduction="none",
|
|
ignore_index=pad_id,
|
|
)
|
|
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
|
|
results = []
|
|
for idx, t in enumerate(next_token):
|
|
results.append(
|
|
GenerationResult(
|
|
token=t.item(),
|
|
text=self.tokenizer.decode([t.item()]),
|
|
source="output",
|
|
logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None),
|
|
batch_idx=idx,
|
|
finished=eos_reached[idx].item(),
|
|
ignore_token=cur_pos < len(prompt_tokens[idx]),
|
|
)
|
|
)
|
|
yield results
|
|
|
|
prev_pos = cur_pos
|
|
if all(eos_reached):
|
|
break
|
|
|
|
def completion(
|
|
self,
|
|
contents: list[RawContent],
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
max_gen_len: int | None = None,
|
|
logprobs: bool = False,
|
|
echo: bool = False,
|
|
) -> Generator[list[GenerationResult], None, None]:
|
|
model_inputs = [self.formatter.encode_content(c) for c in contents]
|
|
for result in self.generate(
|
|
model_inputs=model_inputs,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
max_gen_len=max_gen_len,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
):
|
|
yield result
|
|
if all(r.finished for r in result):
|
|
break
|
|
|
|
def chat_completion(
|
|
self,
|
|
messages_batch: list[list[RawMessage]],
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
max_gen_len: int | None = None,
|
|
logprobs: bool = False,
|
|
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
|
|
echo: bool = False,
|
|
) -> Generator[list[GenerationResult], None, None]:
|
|
model_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch]
|
|
for result in self.generate(
|
|
model_inputs=model_inputs,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
max_gen_len=max_gen_len,
|
|
logprobs=logprobs,
|
|
echo=echo,
|
|
):
|
|
yield result
|
|
if all(r.finished for r in result):
|
|
break
|
|
|
|
|
|
def sample_top_p(probs, p):
|
|
"""
|
|
Perform top-p (nucleus) sampling on a probability distribution.
|
|
|
|
Args:
|
|
probs (torch.Tensor): Probability distribution tensor.
|
|
p (float): Probability threshold for top-p sampling.
|
|
|
|
Returns:
|
|
torch.Tensor: Sampled token indices.
|
|
|
|
Note:
|
|
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
|
|
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
|
|
"""
|
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
|
mask = probs_sum - probs_sort > p
|
|
probs_sort[mask] = 0.0
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
|
next_token = torch.multinomial(probs_sort, num_samples=1)
|
|
next_token = torch.gather(probs_idx, -1, next_token)
|
|
return next_token
|