llama-stack-mirror/llama_stack/providers/remote/safety/nvidia/config.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

37 lines
1.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class NVIDIASafetyConfig(BaseModel):
"""
Configuration for the NVIDIA Guardrail microservice endpoint.
Attributes:
guardrails_service_url (str): A base url for accessing the NVIDIA guardrail endpoint, e.g. http://0.0.0.0:7331
config_id (str): The ID of the guardrails configuration to use from the configuration store
(https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/configuration-store-guide.html)
"""
guardrails_service_url: str = Field(
default_factory=lambda: os.getenv("GUARDRAILS_SERVICE_URL", "http://0.0.0.0:7331"),
description="The url for accessing the guardrails service",
)
config_id: str | None = Field(default="self-check", description="Config ID to use from the config store")
@classmethod
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
return {
"guardrails_service_url": "${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}",
"config_id": "self-check",
}