llama-stack-mirror/tests/integration/inference/recordings/8e6b174c880d1df0839231b68c578582de6821fd565b04ae0b8a1b87a562c793.json
Eric Huang a70fc60485 test
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
Completes the refactoring started in previous commit by:

1. **Fix library client** (critical): Add logic to detect Pydantic model parameters
   and construct them properly from request bodies. The key fix is to NOT exclude
   any params when converting the body for Pydantic models - we need all fields
   to pass to the Pydantic constructor.

   Before: _convert_body excluded all params, leaving body empty for Pydantic construction
   After: Check for Pydantic params first, skip exclusion, construct model with full body

2. **Update remaining providers** to use new Pydantic-based signatures:
   - litellm_openai_mixin: Extract extra fields via __pydantic_extra__
   - databricks: Use TYPE_CHECKING import for params type
   - llama_openai_compat: Use TYPE_CHECKING import for params type
   - sentence_transformers: Update method signatures to use params

3. **Update unit tests** to use new Pydantic signature:
   - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams

This fixes test failures where the library client was trying to construct
Pydantic models with empty dictionaries.
The previous fix had a bug: it called _convert_body() which only keeps fields
that match function parameter names. For Pydantic methods with signature:
  openai_chat_completion(params: OpenAIChatCompletionRequestParams)

The signature only has 'params', but the body has 'model', 'messages', etc.
So _convert_body() returned an empty dict.

Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body
directly to construct the Pydantic model (after stripping NOT_GIVENs).

This properly fixes the ValidationError where required fields were missing.
The streaming code path (_call_streaming) had the same issue as non-streaming:
it called _convert_body() which returned empty dict for Pydantic params.

Applied the same fix as commit 7476c0ae:
- Detect Pydantic model parameters before body conversion
- Skip _convert_body() for Pydantic params
- Construct Pydantic model directly from raw body (after stripping NOT_GIVENs)

This fixes streaming endpoints like openai_chat_completion with stream=True.
The streaming code path (_call_streaming) had the same issue as non-streaming:
it called _convert_body() which returned empty dict for Pydantic params.

Applied the same fix as commit 7476c0ae:
- Detect Pydantic model parameters before body conversion
- Skip _convert_body() for Pydantic params
- Construct Pydantic model directly from raw body (after stripping NOT_GIVENs)

This fixes streaming endpoints like openai_chat_completion with stream=True.
2025-10-09 13:53:18 -07:00

99 lines
2.7 KiB
JSON

{
"test_id": "tests/integration/inference/test_tools_with_schemas.py::TestMCPToolsInChatCompletion::test_mcp_tools_in_inference[txt=ollama/llama3.2:3b-instruct-fp16]",
"request": {
"method": "POST",
"url": "http://0.0.0.0:11434/v1/v1/chat/completions",
"headers": {},
"body": {
"model": "llama3.2:3b-instruct-fp16",
"messages": [
{
"role": "user",
"content": "Calculate 5 + 3"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "calculate",
"description": "",
"parameters": {
"properties": {
"x": {
"title": "X",
"type": "number"
},
"y": {
"title": "Y",
"type": "number"
},
"operation": {
"title": "Operation",
"type": "string"
}
},
"required": [
"x",
"y",
"operation"
],
"title": "calculateArguments",
"type": "object"
}
}
}
],
"extra_body": {}
},
"endpoint": "/v1/chat/completions",
"model": "llama3.2:3b-instruct-fp16"
},
"response": {
"body": {
"__type__": "openai.types.chat.chat_completion.ChatCompletion",
"__data__": {
"id": "rec-8e6b174c880d",
"choices": [
{
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null,
"message": {
"content": "",
"refusal": null,
"role": "assistant",
"annotations": null,
"audio": null,
"function_call": null,
"tool_calls": [
{
"id": "call_vvn0j2ws",
"function": {
"arguments": "{\"operation\":\"+\",\"x\":\"5\",\"y\":\"3\"}",
"name": "calculate"
},
"type": "function",
"index": 0
}
]
}
}
],
"created": 0,
"model": "llama3.2:3b-instruct-fp16",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": "fp_ollama",
"usage": {
"completion_tokens": 27,
"prompt_tokens": 172,
"total_tokens": 199,
"completion_tokens_details": null,
"prompt_tokens_details": null
}
}
},
"is_streaming": false
}
}