mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-14 14:27:58 +00:00
# What does this PR do? ## Test Plan # What does this PR do? ## Test Plan # What does this PR do? ## Test Plan Completes the refactoring started in previous commit by: 1. **Fix library client** (critical): Add logic to detect Pydantic model parameters and construct them properly from request bodies. The key fix is to NOT exclude any params when converting the body for Pydantic models - we need all fields to pass to the Pydantic constructor. Before: _convert_body excluded all params, leaving body empty for Pydantic construction After: Check for Pydantic params first, skip exclusion, construct model with full body 2. **Update remaining providers** to use new Pydantic-based signatures: - litellm_openai_mixin: Extract extra fields via __pydantic_extra__ - databricks: Use TYPE_CHECKING import for params type - llama_openai_compat: Use TYPE_CHECKING import for params type - sentence_transformers: Update method signatures to use params 3. **Update unit tests** to use new Pydantic signature: - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams This fixes test failures where the library client was trying to construct Pydantic models with empty dictionaries. The previous fix had a bug: it called _convert_body() which only keeps fields that match function parameter names. For Pydantic methods with signature: openai_chat_completion(params: OpenAIChatCompletionRequestParams) The signature only has 'params', but the body has 'model', 'messages', etc. So _convert_body() returned an empty dict. Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body directly to construct the Pydantic model (after stripping NOT_GIVENs). This properly fixes the ValidationError where required fields were missing. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True.
99 lines
2.7 KiB
JSON
99 lines
2.7 KiB
JSON
{
|
|
"test_id": "tests/integration/inference/test_tools_with_schemas.py::TestMCPToolsInChatCompletion::test_mcp_tools_in_inference[txt=ollama/llama3.2:3b-instruct-fp16]",
|
|
"request": {
|
|
"method": "POST",
|
|
"url": "http://0.0.0.0:11434/v1/v1/chat/completions",
|
|
"headers": {},
|
|
"body": {
|
|
"model": "llama3.2:3b-instruct-fp16",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "Calculate 5 + 3"
|
|
}
|
|
],
|
|
"tools": [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "calculate",
|
|
"description": "",
|
|
"parameters": {
|
|
"properties": {
|
|
"x": {
|
|
"title": "X",
|
|
"type": "number"
|
|
},
|
|
"y": {
|
|
"title": "Y",
|
|
"type": "number"
|
|
},
|
|
"operation": {
|
|
"title": "Operation",
|
|
"type": "string"
|
|
}
|
|
},
|
|
"required": [
|
|
"x",
|
|
"y",
|
|
"operation"
|
|
],
|
|
"title": "calculateArguments",
|
|
"type": "object"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"extra_body": {}
|
|
},
|
|
"endpoint": "/v1/chat/completions",
|
|
"model": "llama3.2:3b-instruct-fp16"
|
|
},
|
|
"response": {
|
|
"body": {
|
|
"__type__": "openai.types.chat.chat_completion.ChatCompletion",
|
|
"__data__": {
|
|
"id": "rec-8e6b174c880d",
|
|
"choices": [
|
|
{
|
|
"finish_reason": "tool_calls",
|
|
"index": 0,
|
|
"logprobs": null,
|
|
"message": {
|
|
"content": "",
|
|
"refusal": null,
|
|
"role": "assistant",
|
|
"annotations": null,
|
|
"audio": null,
|
|
"function_call": null,
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_vvn0j2ws",
|
|
"function": {
|
|
"arguments": "{\"operation\":\"+\",\"x\":\"5\",\"y\":\"3\"}",
|
|
"name": "calculate"
|
|
},
|
|
"type": "function",
|
|
"index": 0
|
|
}
|
|
]
|
|
}
|
|
}
|
|
],
|
|
"created": 0,
|
|
"model": "llama3.2:3b-instruct-fp16",
|
|
"object": "chat.completion",
|
|
"service_tier": null,
|
|
"system_fingerprint": "fp_ollama",
|
|
"usage": {
|
|
"completion_tokens": 27,
|
|
"prompt_tokens": 172,
|
|
"total_tokens": 199,
|
|
"completion_tokens_details": null,
|
|
"prompt_tokens_details": null
|
|
}
|
|
}
|
|
},
|
|
"is_streaming": false
|
|
}
|
|
}
|