llama-stack-mirror/llama_stack/providers/registry/post_training.py
Ashwin Bharambe 30468d0c43
fix(deps): bump datasets versions for all providers (#3382)
Not doing so results in errors of the kind you see in:
4989026435
2025-09-08 15:13:42 -07:00

70 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import cast
from llama_stack.providers.datatypes import AdapterSpec, Api, InlineProviderSpec, ProviderSpec, remote_provider_spec
# We provide two versions of these providers so that distributions can package the appropriate version of torch.
# The CPU version is used for distributions that don't have GPU support -- they result in smaller container images.
torchtune_def = dict(
api=Api.post_training,
pip_packages=["numpy"],
module="llama_stack.providers.inline.post_training.torchtune",
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.",
)
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
**{ # type: ignore
**torchtune_def,
"provider_type": "inline::torchtune-cpu",
"pip_packages": (
cast(list[str], torchtune_def["pip_packages"])
+ ["torch torchtune>=0.5.0 torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu"]
),
},
),
InlineProviderSpec(
**{ # type: ignore
**torchtune_def,
"provider_type": "inline::torchtune-gpu",
"pip_packages": (
cast(list[str], torchtune_def["pip_packages"]) + ["torch torchtune>=0.5.0 torchao>=0.12.0"]
),
},
),
InlineProviderSpec(
api=Api.post_training,
provider_type="inline::huggingface-gpu",
pip_packages=["trl", "transformers", "peft", "datasets>=4.0.0", "torch"],
module="llama_stack.providers.inline.post_training.huggingface",
config_class="llama_stack.providers.inline.post_training.huggingface.HuggingFacePostTrainingConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
description="HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.",
),
remote_provider_spec(
api=Api.post_training,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=["requests", "aiohttp"],
module="llama_stack.providers.remote.post_training.nvidia",
config_class="llama_stack.providers.remote.post_training.nvidia.NvidiaPostTrainingConfig",
description="NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.",
),
),
]