llama-stack-mirror/docs/static/experimental-llama-stack-spec.yaml
Ashwin Bharambe a8a8aa56c0
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Pre-commit / pre-commit (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
UI Tests / ui-tests (22) (push) Successful in 1m10s
chore!: remove the agents (sessions and turns) API (#4055)
- Removes the deprecated agents (sessions and turns) API that was marked
alpha in 0.3.0
- Cleans up unused imports and orphaned types after the API removal
- Removes `SessionNotFoundError` and `AgentTurnInputType` which are no
longer needed

The agents API is completely superseded by the Responses + Conversations
APIs, and the client SDK Agent class already uses those implementations.

Corresponding client-side PR:
https://github.com/llamastack/llama-stack-client-python/pull/295
2025-11-04 09:38:39 -08:00

2324 lines
70 KiB
YAML

openapi: 3.1.0
info:
title: >-
Llama Stack Specification - Experimental APIs
version: v1
description: >-
This is the specification of the Llama Stack that provides
a set of endpoints and their corresponding interfaces that are
tailored to
best leverage Llama Models.
**🧪 EXPERIMENTAL**: Pre-release APIs (v1alpha, v1beta) that may change before
becoming stable.
servers:
- url: http://any-hosted-llama-stack.com
paths:
/v1beta/datasetio/append-rows/{dataset_id}:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- DatasetIO
summary: Append rows to a dataset.
description: Append rows to a dataset.
parameters:
- name: dataset_id
in: path
description: >-
The ID of the dataset to append the rows to.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/AppendRowsRequest'
required: true
deprecated: false
/v1beta/datasetio/iterrows/{dataset_id}:
get:
responses:
'200':
description: A PaginatedResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PaginatedResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- DatasetIO
summary: >-
Get a paginated list of rows from a dataset.
description: >-
Get a paginated list of rows from a dataset.
Uses offset-based pagination where:
- start_index: The starting index (0-based). If None, starts from beginning.
- limit: Number of items to return. If None or -1, returns all items.
The response includes:
- data: List of items for the current page.
- has_more: Whether there are more items available after this set.
parameters:
- name: dataset_id
in: path
description: >-
The ID of the dataset to get the rows from.
required: true
schema:
type: string
- name: start_index
in: query
description: >-
Index into dataset for the first row to get. Get all rows if None.
required: false
schema:
type: integer
- name: limit
in: query
description: The number of rows to get.
required: false
schema:
type: integer
deprecated: false
/v1beta/datasets:
get:
responses:
'200':
description: A ListDatasetsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListDatasetsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
summary: List all datasets.
description: List all datasets.
parameters: []
deprecated: false
post:
responses:
'200':
description: A Dataset.
content:
application/json:
schema:
$ref: '#/components/schemas/Dataset'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
summary: Register a new dataset.
description: Register a new dataset.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterDatasetRequest'
required: true
deprecated: false
/v1beta/datasets/{dataset_id}:
get:
responses:
'200':
description: A Dataset.
content:
application/json:
schema:
$ref: '#/components/schemas/Dataset'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
summary: Get a dataset by its ID.
description: Get a dataset by its ID.
parameters:
- name: dataset_id
in: path
description: The ID of the dataset to get.
required: true
schema:
type: string
deprecated: false
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
summary: Unregister a dataset by its ID.
description: Unregister a dataset by its ID.
parameters:
- name: dataset_id
in: path
description: The ID of the dataset to unregister.
required: true
schema:
type: string
deprecated: false
/v1alpha/eval/benchmarks:
get:
responses:
'200':
description: A ListBenchmarksResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListBenchmarksResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
summary: List all benchmarks.
description: List all benchmarks.
parameters: []
deprecated: false
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
summary: Register a benchmark.
description: Register a benchmark.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterBenchmarkRequest'
required: true
deprecated: false
/v1alpha/eval/benchmarks/{benchmark_id}:
get:
responses:
'200':
description: A Benchmark.
content:
application/json:
schema:
$ref: '#/components/schemas/Benchmark'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
summary: Get a benchmark by its ID.
description: Get a benchmark by its ID.
parameters:
- name: benchmark_id
in: path
description: The ID of the benchmark to get.
required: true
schema:
type: string
deprecated: false
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
summary: Unregister a benchmark.
description: Unregister a benchmark.
parameters:
- name: benchmark_id
in: path
description: The ID of the benchmark to unregister.
required: true
schema:
type: string
deprecated: false
/v1alpha/eval/benchmarks/{benchmark_id}/evaluations:
post:
responses:
'200':
description: >-
EvaluateResponse object containing generations and scores.
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
summary: Evaluate a list of rows on a benchmark.
description: Evaluate a list of rows on a benchmark.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateRowsRequest'
required: true
deprecated: false
/v1alpha/eval/benchmarks/{benchmark_id}/jobs:
post:
responses:
'200':
description: >-
The job that was created to run the evaluation.
content:
application/json:
schema:
$ref: '#/components/schemas/Job'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
summary: Run an evaluation on a benchmark.
description: Run an evaluation on a benchmark.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RunEvalRequest'
required: true
deprecated: false
/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}:
get:
responses:
'200':
description: The status of the evaluation job.
content:
application/json:
schema:
$ref: '#/components/schemas/Job'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
summary: Get the status of a job.
description: Get the status of a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to get the status of.
required: true
schema:
type: string
deprecated: false
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
summary: Cancel a job.
description: Cancel a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to cancel.
required: true
schema:
type: string
deprecated: false
/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result:
get:
responses:
'200':
description: The result of the job.
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
summary: Get the result of a job.
description: Get the result of a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to get the result of.
required: true
schema:
type: string
deprecated: false
/v1alpha/inference/rerank:
post:
responses:
'200':
description: >-
RerankResponse with indices sorted by relevance score (descending).
content:
application/json:
schema:
$ref: '#/components/schemas/RerankResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
summary: >-
Rerank a list of documents based on their relevance to a query.
description: >-
Rerank a list of documents based on their relevance to a query.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RerankRequest'
required: true
deprecated: false
/v1alpha/post-training/job/artifacts:
get:
responses:
'200':
description: A PostTrainingJobArtifactsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJobArtifactsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Get the artifacts of a training job.
description: Get the artifacts of a training job.
parameters:
- name: job_uuid
in: query
description: >-
The UUID of the job to get the artifacts of.
required: true
schema:
type: string
deprecated: false
/v1alpha/post-training/job/cancel:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Cancel a training job.
description: Cancel a training job.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CancelTrainingJobRequest'
required: true
deprecated: false
/v1alpha/post-training/job/status:
get:
responses:
'200':
description: A PostTrainingJobStatusResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJobStatusResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Get the status of a training job.
description: Get the status of a training job.
parameters:
- name: job_uuid
in: query
description: >-
The UUID of the job to get the status of.
required: true
schema:
type: string
deprecated: false
/v1alpha/post-training/jobs:
get:
responses:
'200':
description: A ListPostTrainingJobsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListPostTrainingJobsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Get all training jobs.
description: Get all training jobs.
parameters: []
deprecated: false
/v1alpha/post-training/preference-optimize:
post:
responses:
'200':
description: A PostTrainingJob.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJob'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Run preference optimization of a model.
description: Run preference optimization of a model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/PreferenceOptimizeRequest'
required: true
deprecated: false
/v1alpha/post-training/supervised-fine-tune:
post:
responses:
'200':
description: A PostTrainingJob.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJob'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
summary: Run supervised fine-tuning of a model.
description: Run supervised fine-tuning of a model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/SupervisedFineTuneRequest'
required: true
deprecated: false
jsonSchemaDialect: >-
https://json-schema.org/draft/2020-12/schema
components:
schemas:
Error:
type: object
properties:
status:
type: integer
description: HTTP status code
title:
type: string
description: >-
Error title, a short summary of the error which is invariant for an error
type
detail:
type: string
description: >-
Error detail, a longer human-readable description of the error
instance:
type: string
description: >-
(Optional) A URL which can be used to retrieve more information about
the specific occurrence of the error
additionalProperties: false
required:
- status
- title
- detail
title: Error
description: >-
Error response from the API. Roughly follows RFC 7807.
AppendRowsRequest:
type: object
properties:
rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The rows to append to the dataset.
additionalProperties: false
required:
- rows
title: AppendRowsRequest
PaginatedResponse:
type: object
properties:
data:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The list of items for the current page
has_more:
type: boolean
description: >-
Whether there are more items available after this set
url:
type: string
description: The URL for accessing this list
additionalProperties: false
required:
- data
- has_more
title: PaginatedResponse
description: >-
A generic paginated response that follows a simple format.
Dataset:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_store
- dataset
- scoring_function
- benchmark
- tool
- tool_group
- prompt
const: dataset
default: dataset
description: >-
Type of resource, always 'dataset' for datasets
purpose:
type: string
enum:
- post-training/messages
- eval/question-answer
- eval/messages-answer
description: >-
Purpose of the dataset indicating its intended use
source:
oneOf:
- $ref: '#/components/schemas/URIDataSource'
- $ref: '#/components/schemas/RowsDataSource'
discriminator:
propertyName: type
mapping:
uri: '#/components/schemas/URIDataSource'
rows: '#/components/schemas/RowsDataSource'
description: >-
Data source configuration for the dataset
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the dataset
additionalProperties: false
required:
- identifier
- provider_id
- type
- purpose
- source
- metadata
title: Dataset
description: >-
Dataset resource for storing and accessing training or evaluation data.
RowsDataSource:
type: object
properties:
type:
type: string
const: rows
default: rows
rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The dataset is stored in rows. E.g. - [ {"messages": [{"role": "user",
"content": "Hello, world!"}, {"role": "assistant", "content": "Hello,
world!"}]} ]
additionalProperties: false
required:
- type
- rows
title: RowsDataSource
description: A dataset stored in rows.
URIDataSource:
type: object
properties:
type:
type: string
const: uri
default: uri
uri:
type: string
description: >-
The dataset can be obtained from a URI. E.g. - "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl" - "data:csv;base64,{base64_content}"
additionalProperties: false
required:
- type
- uri
title: URIDataSource
description: >-
A dataset that can be obtained from a URI.
ListDatasetsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Dataset'
description: List of datasets
additionalProperties: false
required:
- data
title: ListDatasetsResponse
description: Response from listing datasets.
DataSource:
oneOf:
- $ref: '#/components/schemas/URIDataSource'
- $ref: '#/components/schemas/RowsDataSource'
discriminator:
propertyName: type
mapping:
uri: '#/components/schemas/URIDataSource'
rows: '#/components/schemas/RowsDataSource'
RegisterDatasetRequest:
type: object
properties:
purpose:
type: string
enum:
- post-training/messages
- eval/question-answer
- eval/messages-answer
description: >-
The purpose of the dataset. One of: - "post-training/messages": The dataset
contains a messages column with list of messages for post-training. {
"messages": [ {"role": "user", "content": "Hello, world!"}, {"role": "assistant",
"content": "Hello, world!"}, ] } - "eval/question-answer": The dataset
contains a question column and an answer column for evaluation. { "question":
"What is the capital of France?", "answer": "Paris" } - "eval/messages-answer":
The dataset contains a messages column with list of messages and an answer
column for evaluation. { "messages": [ {"role": "user", "content": "Hello,
my name is John Doe."}, {"role": "assistant", "content": "Hello, John
Doe. How can I help you today?"}, {"role": "user", "content": "What's
my name?"}, ], "answer": "John Doe" }
source:
$ref: '#/components/schemas/DataSource'
description: >-
The data source of the dataset. Ensure that the data source schema is
compatible with the purpose of the dataset. Examples: - { "type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl" } - { "type": "uri", "uri":
"lsfs://mydata.jsonl" } - { "type": "uri", "uri": "data:csv;base64,{base64_content}"
} - { "type": "uri", "uri": "huggingface://llamastack/simpleqa?split=train"
} - { "type": "rows", "rows": [ { "messages": [ {"role": "user", "content":
"Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}, ]
} ] }
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The metadata for the dataset. - E.g. {"description": "My dataset"}.
dataset_id:
type: string
description: >-
The ID of the dataset. If not provided, an ID will be generated.
additionalProperties: false
required:
- purpose
- source
title: RegisterDatasetRequest
Benchmark:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_store
- dataset
- scoring_function
- benchmark
- tool
- tool_group
- prompt
const: benchmark
default: benchmark
description: The resource type, always benchmark
dataset_id:
type: string
description: >-
Identifier of the dataset to use for the benchmark evaluation
scoring_functions:
type: array
items:
type: string
description: >-
List of scoring function identifiers to apply during evaluation
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Metadata for this evaluation task
additionalProperties: false
required:
- identifier
- provider_id
- type
- dataset_id
- scoring_functions
- metadata
title: Benchmark
description: >-
A benchmark resource for evaluating model performance.
ListBenchmarksResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Benchmark'
additionalProperties: false
required:
- data
title: ListBenchmarksResponse
RegisterBenchmarkRequest:
type: object
properties:
benchmark_id:
type: string
description: The ID of the benchmark to register.
dataset_id:
type: string
description: >-
The ID of the dataset to use for the benchmark.
scoring_functions:
type: array
items:
type: string
description: >-
The scoring functions to use for the benchmark.
provider_benchmark_id:
type: string
description: >-
The ID of the provider benchmark to use for the benchmark.
provider_id:
type: string
description: >-
The ID of the provider to use for the benchmark.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The metadata to use for the benchmark.
additionalProperties: false
required:
- benchmark_id
- dataset_id
- scoring_functions
title: RegisterBenchmarkRequest
AggregationFunctionType:
type: string
enum:
- average
- weighted_average
- median
- categorical_count
- accuracy
title: AggregationFunctionType
description: >-
Types of aggregation functions for scoring results.
BasicScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: basic
default: basic
description: >-
The type of scoring function parameters, always basic
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- aggregation_functions
title: BasicScoringFnParams
description: >-
Parameters for basic scoring function configuration.
BenchmarkConfig:
type: object
properties:
eval_candidate:
$ref: '#/components/schemas/ModelCandidate'
description: The candidate to evaluate.
scoring_params:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringFnParams'
description: >-
Map between scoring function id and parameters for each scoring function
you want to run
num_examples:
type: integer
description: >-
(Optional) The number of examples to evaluate. If not provided, all examples
in the dataset will be evaluated
additionalProperties: false
required:
- eval_candidate
- scoring_params
title: BenchmarkConfig
description: >-
A benchmark configuration for evaluation.
GreedySamplingStrategy:
type: object
properties:
type:
type: string
const: greedy
default: greedy
description: >-
Must be "greedy" to identify this sampling strategy
additionalProperties: false
required:
- type
title: GreedySamplingStrategy
description: >-
Greedy sampling strategy that selects the highest probability token at each
step.
ImageContentItem:
type: object
properties:
type:
type: string
const: image
default: image
description: >-
Discriminator type of the content item. Always "image"
image:
type: object
properties:
url:
$ref: '#/components/schemas/URL'
description: >-
A URL of the image or data URL in the format of data:image/{type};base64,{data}.
Note that URL could have length limits.
data:
type: string
contentEncoding: base64
description: base64 encoded image data as string
additionalProperties: false
description: >-
Image as a base64 encoded string or an URL
additionalProperties: false
required:
- type
- image
title: ImageContentItem
description: A image content item
InterleavedContent:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
InterleavedContentItem:
oneOf:
- $ref: '#/components/schemas/ImageContentItem'
- $ref: '#/components/schemas/TextContentItem'
discriminator:
propertyName: type
mapping:
image: '#/components/schemas/ImageContentItem'
text: '#/components/schemas/TextContentItem'
LLMAsJudgeScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: llm_as_judge
default: llm_as_judge
description: >-
The type of scoring function parameters, always llm_as_judge
judge_model:
type: string
description: >-
Identifier of the LLM model to use as a judge for scoring
prompt_template:
type: string
description: >-
(Optional) Custom prompt template for the judge model
judge_score_regexes:
type: array
items:
type: string
description: >-
Regexes to extract the answer from generated response
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- judge_model
- judge_score_regexes
- aggregation_functions
title: LLMAsJudgeScoringFnParams
description: >-
Parameters for LLM-as-judge scoring function configuration.
ModelCandidate:
type: object
properties:
type:
type: string
const: model
default: model
model:
type: string
description: The model ID to evaluate.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: The sampling parameters for the model.
system_message:
$ref: '#/components/schemas/SystemMessage'
description: >-
(Optional) The system message providing instructions or context to the
model.
additionalProperties: false
required:
- type
- model
- sampling_params
title: ModelCandidate
description: A model candidate for evaluation.
RegexParserScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: regex_parser
default: regex_parser
description: >-
The type of scoring function parameters, always regex_parser
parsing_regexes:
type: array
items:
type: string
description: >-
Regex to extract the answer from generated response
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- parsing_regexes
- aggregation_functions
title: RegexParserScoringFnParams
description: >-
Parameters for regex parser scoring function configuration.
SamplingParams:
type: object
properties:
strategy:
oneOf:
- $ref: '#/components/schemas/GreedySamplingStrategy'
- $ref: '#/components/schemas/TopPSamplingStrategy'
- $ref: '#/components/schemas/TopKSamplingStrategy'
discriminator:
propertyName: type
mapping:
greedy: '#/components/schemas/GreedySamplingStrategy'
top_p: '#/components/schemas/TopPSamplingStrategy'
top_k: '#/components/schemas/TopKSamplingStrategy'
description: The sampling strategy.
max_tokens:
type: integer
description: >-
The maximum number of tokens that can be generated in the completion.
The token count of your prompt plus max_tokens cannot exceed the model's
context length.
repetition_penalty:
type: number
default: 1.0
description: >-
Number between -2.0 and 2.0. Positive values penalize new tokens based
on whether they appear in the text so far, increasing the model's likelihood
to talk about new topics.
stop:
type: array
items:
type: string
description: >-
Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
additionalProperties: false
required:
- strategy
title: SamplingParams
description: Sampling parameters.
ScoringFnParams:
oneOf:
- $ref: '#/components/schemas/LLMAsJudgeScoringFnParams'
- $ref: '#/components/schemas/RegexParserScoringFnParams'
- $ref: '#/components/schemas/BasicScoringFnParams'
discriminator:
propertyName: type
mapping:
llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams'
regex_parser: '#/components/schemas/RegexParserScoringFnParams'
basic: '#/components/schemas/BasicScoringFnParams'
ScoringFnParamsType:
type: string
enum:
- llm_as_judge
- regex_parser
- basic
title: ScoringFnParamsType
description: >-
Types of scoring function parameter configurations.
SystemMessage:
type: object
properties:
role:
type: string
const: system
default: system
description: >-
Must be "system" to identify this as a system message
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the "system prompt". If multiple system messages are provided,
they are concatenated. The underlying Llama Stack code may also add other
system messages (for example, for formatting tool definitions).
additionalProperties: false
required:
- role
- content
title: SystemMessage
description: >-
A system message providing instructions or context to the model.
TextContentItem:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Discriminator type of the content item. Always "text"
text:
type: string
description: Text content
additionalProperties: false
required:
- type
- text
title: TextContentItem
description: A text content item
TopKSamplingStrategy:
type: object
properties:
type:
type: string
const: top_k
default: top_k
description: >-
Must be "top_k" to identify this sampling strategy
top_k:
type: integer
description: >-
Number of top tokens to consider for sampling. Must be at least 1
additionalProperties: false
required:
- type
- top_k
title: TopKSamplingStrategy
description: >-
Top-k sampling strategy that restricts sampling to the k most likely tokens.
TopPSamplingStrategy:
type: object
properties:
type:
type: string
const: top_p
default: top_p
description: >-
Must be "top_p" to identify this sampling strategy
temperature:
type: number
description: >-
Controls randomness in sampling. Higher values increase randomness
top_p:
type: number
default: 0.95
description: >-
Cumulative probability threshold for nucleus sampling. Defaults to 0.95
additionalProperties: false
required:
- type
title: TopPSamplingStrategy
description: >-
Top-p (nucleus) sampling strategy that samples from the smallest set of tokens
with cumulative probability >= p.
URL:
type: object
properties:
uri:
type: string
description: The URL string pointing to the resource
additionalProperties: false
required:
- uri
title: URL
description: A URL reference to external content.
EvaluateRowsRequest:
type: object
properties:
input_rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The rows to evaluate.
scoring_functions:
type: array
items:
type: string
description: >-
The scoring functions to use for the evaluation.
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
description: The configuration for the benchmark.
additionalProperties: false
required:
- input_rows
- scoring_functions
- benchmark_config
title: EvaluateRowsRequest
EvaluateResponse:
type: object
properties:
generations:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The generations from the evaluation.
scores:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringResult'
description: The scores from the evaluation.
additionalProperties: false
required:
- generations
- scores
title: EvaluateResponse
description: The response from an evaluation.
ScoringResult:
type: object
properties:
score_rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The scoring result for each row. Each row is a map of column name to value.
aggregated_results:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Map of metric name to aggregated value
additionalProperties: false
required:
- score_rows
- aggregated_results
title: ScoringResult
description: A scoring result for a single row.
RunEvalRequest:
type: object
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
description: The configuration for the benchmark.
additionalProperties: false
required:
- benchmark_config
title: RunEvalRequest
Job:
type: object
properties:
job_id:
type: string
description: Unique identifier for the job
status:
type: string
enum:
- completed
- in_progress
- failed
- scheduled
- cancelled
description: Current execution status of the job
additionalProperties: false
required:
- job_id
- status
title: Job
description: >-
A job execution instance with status tracking.
"OpenAIChatCompletionContentPartImageParam":
type: object
properties:
type:
type: string
const: image_url
default: image_url
description: >-
Must be "image_url" to identify this as image content
image_url:
$ref: '#/components/schemas/OpenAIImageURL'
description: >-
Image URL specification and processing details
additionalProperties: false
required:
- type
- image_url
title: >-
OpenAIChatCompletionContentPartImageParam
description: >-
Image content part for OpenAI-compatible chat completion messages.
OpenAIChatCompletionContentPartTextParam:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Must be "text" to identify this as text content
text:
type: string
description: The text content of the message
additionalProperties: false
required:
- type
- text
title: OpenAIChatCompletionContentPartTextParam
description: >-
Text content part for OpenAI-compatible chat completion messages.
OpenAIImageURL:
type: object
properties:
url:
type: string
description: >-
URL of the image to include in the message
detail:
type: string
description: >-
(Optional) Level of detail for image processing. Can be "low", "high",
or "auto"
additionalProperties: false
required:
- url
title: OpenAIImageURL
description: >-
Image URL specification for OpenAI-compatible chat completion messages.
RerankRequest:
type: object
properties:
model:
type: string
description: >-
The identifier of the reranking model to use.
query:
oneOf:
- type: string
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam'
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam'
description: >-
The search query to rank items against. Can be a string, text content
part, or image content part. The input must not exceed the model's max
input token length.
items:
type: array
items:
oneOf:
- type: string
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam'
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam'
description: >-
List of items to rerank. Each item can be a string, text content part,
or image content part. Each input must not exceed the model's max input
token length.
max_num_results:
type: integer
description: >-
(Optional) Maximum number of results to return. Default: returns all.
additionalProperties: false
required:
- model
- query
- items
title: RerankRequest
RerankData:
type: object
properties:
index:
type: integer
description: >-
The original index of the document in the input list
relevance_score:
type: number
description: >-
The relevance score from the model output. Values are inverted when applicable
so that higher scores indicate greater relevance.
additionalProperties: false
required:
- index
- relevance_score
title: RerankData
description: >-
A single rerank result from a reranking response.
RerankResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/RerankData'
description: >-
List of rerank result objects, sorted by relevance score (descending)
additionalProperties: false
required:
- data
title: RerankResponse
description: Response from a reranking request.
Checkpoint:
type: object
properties:
identifier:
type: string
description: Unique identifier for the checkpoint
created_at:
type: string
format: date-time
description: >-
Timestamp when the checkpoint was created
epoch:
type: integer
description: >-
Training epoch when the checkpoint was saved
post_training_job_id:
type: string
description: >-
Identifier of the training job that created this checkpoint
path:
type: string
description: >-
File system path where the checkpoint is stored
training_metrics:
$ref: '#/components/schemas/PostTrainingMetric'
description: >-
(Optional) Training metrics associated with this checkpoint
additionalProperties: false
required:
- identifier
- created_at
- epoch
- post_training_job_id
- path
title: Checkpoint
description: Checkpoint created during training runs.
PostTrainingJobArtifactsResponse:
type: object
properties:
job_uuid:
type: string
description: Unique identifier for the training job
checkpoints:
type: array
items:
$ref: '#/components/schemas/Checkpoint'
description: >-
List of model checkpoints created during training
additionalProperties: false
required:
- job_uuid
- checkpoints
title: PostTrainingJobArtifactsResponse
description: Artifacts of a finetuning job.
PostTrainingMetric:
type: object
properties:
epoch:
type: integer
description: Training epoch number
train_loss:
type: number
description: Loss value on the training dataset
validation_loss:
type: number
description: Loss value on the validation dataset
perplexity:
type: number
description: >-
Perplexity metric indicating model confidence
additionalProperties: false
required:
- epoch
- train_loss
- validation_loss
- perplexity
title: PostTrainingMetric
description: >-
Training metrics captured during post-training jobs.
CancelTrainingJobRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to cancel.
additionalProperties: false
required:
- job_uuid
title: CancelTrainingJobRequest
PostTrainingJobStatusResponse:
type: object
properties:
job_uuid:
type: string
description: Unique identifier for the training job
status:
type: string
enum:
- completed
- in_progress
- failed
- scheduled
- cancelled
description: Current status of the training job
scheduled_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job was scheduled
started_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job execution began
completed_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job finished, if completed
resources_allocated:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Information about computational resources allocated to the
job
checkpoints:
type: array
items:
$ref: '#/components/schemas/Checkpoint'
description: >-
List of model checkpoints created during training
additionalProperties: false
required:
- job_uuid
- status
- checkpoints
title: PostTrainingJobStatusResponse
description: Status of a finetuning job.
ListPostTrainingJobsResponse:
type: object
properties:
data:
type: array
items:
type: object
properties:
job_uuid:
type: string
additionalProperties: false
required:
- job_uuid
title: PostTrainingJob
additionalProperties: false
required:
- data
title: ListPostTrainingJobsResponse
DPOAlignmentConfig:
type: object
properties:
beta:
type: number
description: Temperature parameter for the DPO loss
loss_type:
$ref: '#/components/schemas/DPOLossType'
default: sigmoid
description: The type of loss function to use for DPO
additionalProperties: false
required:
- beta
- loss_type
title: DPOAlignmentConfig
description: >-
Configuration for Direct Preference Optimization (DPO) alignment.
DPOLossType:
type: string
enum:
- sigmoid
- hinge
- ipo
- kto_pair
title: DPOLossType
DataConfig:
type: object
properties:
dataset_id:
type: string
description: >-
Unique identifier for the training dataset
batch_size:
type: integer
description: Number of samples per training batch
shuffle:
type: boolean
description: >-
Whether to shuffle the dataset during training
data_format:
$ref: '#/components/schemas/DatasetFormat'
description: >-
Format of the dataset (instruct or dialog)
validation_dataset_id:
type: string
description: >-
(Optional) Unique identifier for the validation dataset
packed:
type: boolean
default: false
description: >-
(Optional) Whether to pack multiple samples into a single sequence for
efficiency
train_on_input:
type: boolean
default: false
description: >-
(Optional) Whether to compute loss on input tokens as well as output tokens
additionalProperties: false
required:
- dataset_id
- batch_size
- shuffle
- data_format
title: DataConfig
description: >-
Configuration for training data and data loading.
DatasetFormat:
type: string
enum:
- instruct
- dialog
title: DatasetFormat
description: Format of the training dataset.
EfficiencyConfig:
type: object
properties:
enable_activation_checkpointing:
type: boolean
default: false
description: >-
(Optional) Whether to use activation checkpointing to reduce memory usage
enable_activation_offloading:
type: boolean
default: false
description: >-
(Optional) Whether to offload activations to CPU to save GPU memory
memory_efficient_fsdp_wrap:
type: boolean
default: false
description: >-
(Optional) Whether to use memory-efficient FSDP wrapping
fsdp_cpu_offload:
type: boolean
default: false
description: >-
(Optional) Whether to offload FSDP parameters to CPU
additionalProperties: false
title: EfficiencyConfig
description: >-
Configuration for memory and compute efficiency optimizations.
OptimizerConfig:
type: object
properties:
optimizer_type:
$ref: '#/components/schemas/OptimizerType'
description: >-
Type of optimizer to use (adam, adamw, or sgd)
lr:
type: number
description: Learning rate for the optimizer
weight_decay:
type: number
description: >-
Weight decay coefficient for regularization
num_warmup_steps:
type: integer
description: Number of steps for learning rate warmup
additionalProperties: false
required:
- optimizer_type
- lr
- weight_decay
- num_warmup_steps
title: OptimizerConfig
description: >-
Configuration parameters for the optimization algorithm.
OptimizerType:
type: string
enum:
- adam
- adamw
- sgd
title: OptimizerType
description: >-
Available optimizer algorithms for training.
TrainingConfig:
type: object
properties:
n_epochs:
type: integer
description: Number of training epochs to run
max_steps_per_epoch:
type: integer
default: 1
description: Maximum number of steps to run per epoch
gradient_accumulation_steps:
type: integer
default: 1
description: >-
Number of steps to accumulate gradients before updating
max_validation_steps:
type: integer
default: 1
description: >-
(Optional) Maximum number of validation steps per epoch
data_config:
$ref: '#/components/schemas/DataConfig'
description: >-
(Optional) Configuration for data loading and formatting
optimizer_config:
$ref: '#/components/schemas/OptimizerConfig'
description: >-
(Optional) Configuration for the optimization algorithm
efficiency_config:
$ref: '#/components/schemas/EfficiencyConfig'
description: >-
(Optional) Configuration for memory and compute optimizations
dtype:
type: string
default: bf16
description: >-
(Optional) Data type for model parameters (bf16, fp16, fp32)
additionalProperties: false
required:
- n_epochs
- max_steps_per_epoch
- gradient_accumulation_steps
title: TrainingConfig
description: >-
Comprehensive configuration for the training process.
PreferenceOptimizeRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to create.
finetuned_model:
type: string
description: The model to fine-tune.
algorithm_config:
$ref: '#/components/schemas/DPOAlignmentConfig'
description: The algorithm configuration.
training_config:
$ref: '#/components/schemas/TrainingConfig'
description: The training configuration.
hyperparam_search_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The hyperparam search configuration.
logger_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The logger configuration.
additionalProperties: false
required:
- job_uuid
- finetuned_model
- algorithm_config
- training_config
- hyperparam_search_config
- logger_config
title: PreferenceOptimizeRequest
PostTrainingJob:
type: object
properties:
job_uuid:
type: string
additionalProperties: false
required:
- job_uuid
title: PostTrainingJob
AlgorithmConfig:
oneOf:
- $ref: '#/components/schemas/LoraFinetuningConfig'
- $ref: '#/components/schemas/QATFinetuningConfig'
discriminator:
propertyName: type
mapping:
LoRA: '#/components/schemas/LoraFinetuningConfig'
QAT: '#/components/schemas/QATFinetuningConfig'
LoraFinetuningConfig:
type: object
properties:
type:
type: string
const: LoRA
default: LoRA
description: Algorithm type identifier, always "LoRA"
lora_attn_modules:
type: array
items:
type: string
description: >-
List of attention module names to apply LoRA to
apply_lora_to_mlp:
type: boolean
description: Whether to apply LoRA to MLP layers
apply_lora_to_output:
type: boolean
description: >-
Whether to apply LoRA to output projection layers
rank:
type: integer
description: >-
Rank of the LoRA adaptation (lower rank = fewer parameters)
alpha:
type: integer
description: >-
LoRA scaling parameter that controls adaptation strength
use_dora:
type: boolean
default: false
description: >-
(Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
quantize_base:
type: boolean
default: false
description: >-
(Optional) Whether to quantize the base model weights
additionalProperties: false
required:
- type
- lora_attn_modules
- apply_lora_to_mlp
- apply_lora_to_output
- rank
- alpha
title: LoraFinetuningConfig
description: >-
Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
QATFinetuningConfig:
type: object
properties:
type:
type: string
const: QAT
default: QAT
description: Algorithm type identifier, always "QAT"
quantizer_name:
type: string
description: >-
Name of the quantization algorithm to use
group_size:
type: integer
description: Size of groups for grouped quantization
additionalProperties: false
required:
- type
- quantizer_name
- group_size
title: QATFinetuningConfig
description: >-
Configuration for Quantization-Aware Training (QAT) fine-tuning.
SupervisedFineTuneRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to create.
training_config:
$ref: '#/components/schemas/TrainingConfig'
description: The training configuration.
hyperparam_search_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The hyperparam search configuration.
logger_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The logger configuration.
model:
type: string
description: The model to fine-tune.
checkpoint_dir:
type: string
description: The directory to save checkpoint(s) to.
algorithm_config:
$ref: '#/components/schemas/AlgorithmConfig'
description: The algorithm configuration.
additionalProperties: false
required:
- job_uuid
- training_config
- hyperparam_search_config
- logger_config
title: SupervisedFineTuneRequest
responses:
BadRequest400:
description: The request was invalid or malformed
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 400
title: Bad Request
detail: The request was invalid or malformed
TooManyRequests429:
description: >-
The client has sent too many requests in a given amount of time
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 429
title: Too Many Requests
detail: >-
You have exceeded the rate limit. Please try again later.
InternalServerError500:
description: >-
The server encountered an unexpected error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 500
title: Internal Server Error
detail: >-
An unexpected error occurred. Our team has been notified.
DefaultError:
description: An unexpected error occurred
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 0
title: Error
detail: An unexpected error occurred
security:
- Default: []
tags:
- name: Benchmarks
description: ''
- name: DatasetIO
description: ''
- name: Datasets
description: ''
- name: Eval
description: >-
Llama Stack Evaluation API for running evaluations on model and agent candidates.
x-displayName: Evaluations
- name: PostTraining (Coming Soon)
description: ''
x-tagGroups:
- name: Operations
tags:
- Benchmarks
- DatasetIO
- Datasets
- Eval
- PostTraining (Coming Soon)