llama-stack-mirror/llama_toolchain/cli/model/describe.py
Dalton Flanagan b311dcd143 formatting
2024-08-14 17:03:43 -04:00

75 lines
2.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import json
from llama_models.sku_list import resolve_model
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.cli.table import print_table
from llama_toolchain.common.serialize import EnumEncoder
from termcolor import colored
class ModelDescribe(Subcommand):
"""Show details about a model"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"describe",
prog="llama model describe",
description="Show details about a llama model",
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_model_describe_cmd)
def _add_arguments(self):
self.parser.add_argument(
"-m",
"--model-id",
type=str,
required=True,
)
def _run_model_describe_cmd(self, args: argparse.Namespace) -> None:
model = resolve_model(args.model_id)
if model is None:
self.parser.error(
f"Model {args.model_id} not found; try 'llama model list' for a list of available models."
)
return
rows = [
(
colored("Model", "white", attrs=["bold"]),
colored(model.descriptor(), "white", attrs=["bold"]),
),
("HuggingFace ID", model.huggingface_repo or "<Not Available>"),
("Description", model.description_markdown),
("Context Length", f"{model.max_seq_length // 1024}K tokens"),
("Weights format", model.quantization_format.value),
("Model params.json", json.dumps(model.model_args, indent=4)),
]
if model.recommended_sampling_params is not None:
sampling_params = model.recommended_sampling_params.dict()
for k in ("max_tokens", "repetition_penalty"):
del sampling_params[k]
rows.append(
(
"Recommended sampling params",
json.dumps(sampling_params, cls=EnumEncoder, indent=4),
)
)
print_table(
rows,
separate_rows=True,
)