llama-stack-mirror/tests/integration/inference/test_openai_completion.py
Sébastien Han a1527b3528
chore: rm tgi
Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-16 13:21:25 +02:00

517 lines
20 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
import unicodedata
import pytest
from ..test_cases.test_case import TestCase
def _normalize_text(text: str) -> str:
"""
Normalize Unicode text by removing diacritical marks for comparison.
The test case streaming_01 expects the answer "Sol" for the question "What's the name of the Sun
in latin?", but the model is returning "sōl" (with a macron over the 'o'), which is the correct
Latin spelling. The test is failing because it's doing a simple case-insensitive string search
for "sol" but the actual response contains the diacritical mark.
"""
return unicodedata.normalize("NFD", text).encode("ascii", "ignore").decode("ascii").lower()
def provider_from_model(client_with_models, model_id):
models = {m.identifier: m for m in client_with_models.models.list()}
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
provider_id = models[model_id].provider_id
providers = {p.provider_id: p for p in client_with_models.providers.list()}
return providers[provider_id]
def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type in (
"inline::meta-reference",
"inline::sentence-transformers",
"inline::vllm",
"remote::bedrock",
"remote::cerebras",
"remote::databricks",
# Technically Nvidia does support OpenAI completions, but none of their hosted models
# support both completions and chat completions endpoint and all the Llama models are
# just chat completions
"remote::nvidia",
"remote::runpod",
"remote::sambanova",
"remote::vertexai",
# {"error":{"message":"Unknown request URL: GET /openai/v1/completions. Please check the URL for typos,
# or see the docs at https://console.groq.com/docs/","type":"invalid_request_error","code":"unknown_url"}}
"remote::groq",
"remote::gemini", # https://generativelanguage.googleapis.com/v1beta/openai/completions -> 404
"remote::anthropic", # at least claude-3-{5,7}-{haiku,sonnet}-* / claude-{sonnet,opus}-4-* are not supported
"remote::azure", # {'error': {'code': 'OperationNotSupported', 'message': 'The completion operation
# does not work with the specified model, gpt-5-mini. Please choose different model and try
# again. You can learn more about which models can be used with each operation here:
# https://go.microsoft.com/fwlink/?linkid=2197993.'}}"}
"remote::watsonx", # return 404 when hitting the /openai/v1 endpoint
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.")
def skip_if_model_doesnt_support_suffix(client_with_models, model_id):
# To test `fim` ( fill in the middle ) completion, we need to use a model that supports suffix.
# Use this to specifically test this API functionality.
# pytest -sv --stack-config="inference=starter" \
# tests/integration/inference/test_openai_completion.py \
# --text-model qwen2.5-coder:1.5b \
# -k test_openai_completion_non_streaming_suffix
if model_id != "qwen2.5-coder:1.5b":
pytest.skip(f"Suffix is not supported for the model: {model_id}.")
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type != "remote::ollama":
pytest.skip(f"Provider {provider.provider_type} doesn't support suffix.")
def skip_if_doesnt_support_n(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type in (
"remote::sambanova",
"remote::ollama",
# https://console.groq.com/docs/openai#currently-unsupported-openai-features
# -> Error code: 400 - {'error': {'message': "'n' : number must be at most 1", 'type': 'invalid_request_error'}}
"remote::groq",
# Error code: 400 - [{'error': {'code': 400, 'message': 'Only one candidate can be specified in the
# current model', 'status': 'INVALID_ARGUMENT'}}]
"remote::gemini",
# https://docs.anthropic.com/en/api/openai-sdk#simple-fields
"remote::anthropic",
"remote::vertexai",
# Error code: 400 - [{'error': {'code': 400, 'message': 'Unable to submit request because candidateCount must be 1 but
# the entered value was 2. Update the candidateCount value and try again.', 'status': 'INVALID_ARGUMENT'}
"remote::tgi", # TGI ignores n param silently
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support n param.")
def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type in (
"inline::meta-reference",
"inline::sentence-transformers",
"inline::vllm",
"remote::bedrock",
"remote::cerebras",
"remote::databricks",
"remote::runpod",
"remote::watsonx", # watsonx returns 404 when hitting the /openai/v1 endpoint
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.")
def skip_if_provider_isnt_vllm(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type != "remote::vllm":
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.")
def skip_if_provider_isnt_openai(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type != "remote::openai":
pytest.skip(
f"Model {model_id} hosted by {provider.provider_type} doesn't support chat completion calls with base64 encoded files."
)
@pytest.mark.parametrize(
"test_case",
[
"inference:completion:sanity",
],
)
def test_openai_completion_non_streaming(llama_stack_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
# ollama needs more verbose prompting for some reason here...
prompt = "Respond to this question and explain your answer. " + tc["content"]
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
)
assert len(response.choices) > 0
choice = response.choices[0]
assert len(choice.text) > 10
@pytest.mark.parametrize(
"test_case",
[
"inference:completion:suffix",
],
)
def test_openai_completion_non_streaming_suffix(llama_stack_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
skip_if_model_doesnt_support_suffix(client_with_models, text_model_id)
tc = TestCase(test_case)
# ollama needs more verbose prompting for some reason here...
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=tc["content"],
stream=False,
suffix=tc["suffix"],
max_tokens=10,
)
assert len(response.choices) > 0
choice = response.choices[0]
assert len(choice.text) > 5
normalized_text = _normalize_text(choice.text)
assert "france" in normalized_text
@pytest.mark.parametrize(
"test_case",
[
"inference:completion:sanity",
],
)
def test_openai_completion_streaming(llama_stack_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
# ollama needs more verbose prompting for some reason here...
prompt = "Respond to this question and explain your answer. " + tc["content"]
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=True,
max_tokens=50,
)
streamed_content = [chunk.choices[0].text or "" for chunk in response]
content_str = "".join(streamed_content).lower().strip()
assert len(content_str) > 10
@pytest.mark.parametrize(
"prompt_logprobs",
[
1,
0,
],
)
def test_openai_completion_prompt_logprobs(llama_stack_client, client_with_models, text_model_id, prompt_logprobs):
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
prompt = "Hello, world!"
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
prompt_logprobs=prompt_logprobs,
)
assert len(response.choices) > 0
choice = response.choices[0]
assert len(choice.prompt_logprobs) > 0
def test_openai_completion_guided_choice(llama_stack_client, client_with_models, text_model_id):
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
prompt = "I am feeling really sad today."
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
guided_choice=["joy", "sadness"],
)
assert len(response.choices) > 0
choice = response.choices[0]
assert choice.text in ["joy", "sadness"]
# Run the chat-completion tests with both the OpenAI client and the LlamaStack client
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:non_streaming_01",
"inference:chat_completion:non_streaming_02",
],
)
def test_openai_chat_completion_non_streaming(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": question,
}
],
stream=False,
)
message_content = response.choices[0].message.content.lower().strip()
assert len(message_content) > 0
normalized_expected = _normalize_text(expected)
normalized_content = _normalize_text(message_content)
assert normalized_expected in normalized_content
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:streaming_01",
"inference:chat_completion:streaming_02",
],
)
def test_openai_chat_completion_streaming(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history
)
streamed_content = []
for chunk in response:
# On some providers like Azure, the choices are empty on the first chunk, so we need to check for that
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content:
streamed_content.append(chunk.choices[0].delta.content.lower().strip())
assert len(streamed_content) > 0
normalized_expected = _normalize_text(expected)
normalized_content = _normalize_text("".join(streamed_content))
assert normalized_expected in normalized_content
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:streaming_01",
"inference:chat_completion:streaming_02",
],
)
def test_openai_chat_completion_streaming_with_n(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
skip_if_doesnt_support_n(client_with_models, text_model_id)
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history,
n=2,
)
streamed_content = {}
for chunk in response:
for choice in chunk.choices:
if choice.delta.content:
streamed_content[choice.index] = (
streamed_content.get(choice.index, "") + choice.delta.content.lower().strip()
)
assert len(streamed_content) == 2
normalized_expected = _normalize_text(expected)
for i, content in streamed_content.items():
normalized_content = _normalize_text(content)
assert normalized_expected in normalized_content, (
f"Choice {i}: Expected {normalized_expected} in {normalized_content}"
)
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store(compat_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = compat_client
# make a chat completion
message = "Hello, world!"
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None and chunk.id:
response_id = chunk.id
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
else:
response_id = response.id
content = response.choices[0].message.content
tries = 0
while tries < 10:
responses = client.chat.completions.list(limit=1000)
if response_id in [r.id for r in responses.data]:
break
else:
tries += 1
time.sleep(0.1)
assert tries < 10, f"Response {response_id} not found after 1 second"
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.choices[0].message.content == content, retrieved_response
input_content = (
getattr(retrieved_response.input_messages[0], "content", None)
or retrieved_response.input_messages[0]["content"]
)
assert input_content == message, retrieved_response
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store_tool_calls(compat_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = compat_client
# make a chat completion
message = "What's the weather in Tokyo? Use the get_weather function to get the weather."
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
tools=[
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
},
}
],
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None and chunk.id:
response_id = chunk.id
if chunk.choices and len(chunk.choices) > 0:
if delta := chunk.choices[0].delta:
if delta.content:
content += delta.content
else:
response_id = response.id
content = response.choices[0].message.content
# wait for the response to be stored
tries = 0
while tries < 10:
responses = client.chat.completions.list(limit=1000)
if response_id in [r.id for r in responses.data]:
break
else:
tries += 1
time.sleep(0.1)
assert tries < 10, f"Response {response_id} not found after 1 second"
responses = client.chat.completions.list(limit=1000)
assert response_id in [r.id for r in responses.data]
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
input_content = (
getattr(retrieved_response.input_messages[0], "content", None)
or retrieved_response.input_messages[0]["content"]
)
assert input_content == message, retrieved_response
tool_calls = retrieved_response.choices[0].message.tool_calls
# sometimes model doesn't output tool calls, but we still want to test that the tool was called
if tool_calls:
# because we test with small models, just check that we retrieved
# a tool call with a name and arguments string, but ignore contents
assert len(tool_calls) == 1
assert tool_calls[0].function.name
assert tool_calls[0].function.arguments
else:
# failed tool call parses show up as a message with content, so ensure
# that the retrieve response content matches the original request
assert retrieved_response.choices[0].message.content == content
def test_openai_chat_completion_non_streaming_with_file(openai_client, client_with_models, text_model_id):
skip_if_provider_isnt_openai(client_with_models, text_model_id)
# Hardcoded base64-encoded PDF with "Hello World" text
pdf_base64 = "JVBERi0xLjQKMSAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMiAwIFIKPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUgL1BhZ2VzCi9LaWRzIFszIDAgUl0KL0NvdW50IDEKPD4KZW5kb2JqCjMgMCBvYmoKPDwKL1R5cGUgL1BhZ2UKL1BhcmVudCAyIDAgUgovTWVkaWFCb3ggWzAgMCA2MTIgNzkyXQovQ29udGVudHMgNCAwIFIKL1Jlc291cmNlcyA8PAovRm9udCA8PAovRjEgPDwKL1R5cGUgL0ZvbnQKL1N1YnR5cGUgL1R5cGUxCi9CYXNlRm9udCAvSGVsdmV0aWNhCj4+Cj4+Cj4+Cj4+CmVuZG9iago0IDAgb2JqCjw8Ci9MZW5ndGggNDQKPj4Kc3RyZWFtCkJUCi9GMSAxMiBUZgoxMDAgNzUwIFRkCihIZWxsbyBXb3JsZCkgVGoKRVQKZW5kc3RyZWFtCmVuZG9iagp4cmVmCjAgNQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMDkgMDAwMDAgbiAKMDAwMDAwMDA1OCAwMDAwMCBuIAowMDAwMDAwMTE1IDAwMDAwIG4gCjAwMDAwMDAzMTUgMDAwMDAgbiAKdHJhaWxlcgo8PAovU2l6ZSA1Ci9Sb290IDEgMCBSCj4+CnN0YXJ0eHJlZgo0MDkKJSVFT0Y="
response = openai_client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": "Describe what you see in this PDF file.",
},
{
"role": "user",
"content": [
{
"type": "file",
"file": {
"filename": "my-temp-hello-world-pdf",
"file_data": f"data:application/pdf;base64,{pdf_base64}",
},
}
],
},
],
stream=False,
)
message_content = response.choices[0].message.content.lower().strip()
normalized_content = _normalize_text(message_content)
assert "hello world" in normalized_content