llama-stack-mirror/llama_stack/apis/dataset/dataset.py
2024-10-13 23:27:02 -07:00

161 lines
3.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
from enum import Enum
from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
from llama_models.schema_utils import json_schema_type, webmethod
from llama_models.llama3.api.datatypes import * # noqa: F403
from pydantic import BaseModel, Field
from typing_extensions import Annotated
@json_schema_type
class GenerationInput(BaseModel):
messages: List[Message]
@json_schema_type
class GenerationOutput(BaseModel):
completion_message: str
logprobs: Optional[List[TokenLogProbs]] = None
@json_schema_type
class PostprocessedGeneration(BaseModel):
completion_message: str
# structured transformed output from raw_completion_message to compute scorer metrics
transformed_generation: Optional[Any] = None
# A sample (row) from dataset
TDatasetSample = TypeVar("TDatasetSample")
@json_schema_type
class DatasetSample(BaseModel): ...
@json_schema_type
class DictSample(DatasetSample):
data: Dict[str, Any]
# A sample (row) from evals intermediate dataset after preprocessing
TPreprocessedSample = TypeVar("TPreprocessedSample")
@json_schema_type
class PreprocessedSample(DatasetSample):
generation_input: GenerationInput
# A sample (row) from evals intermediate dataset after inference
TGenerationResponseSample = TypeVar("TGenerationResponseSample")
@json_schema_type
class GenerationResponseSample(DatasetSample):
generation_output: GenerationOutput
# A sample (row) for prepared evals dataset ready for scoring
TScorerInputSample = TypeVar("TScorerInputSample")
@json_schema_type
class ScorerInputSample(DatasetSample):
generation_output: PostprocessedGeneration
expected_output: Union[str, List[str]]
@json_schema_type
class DatasetType(Enum):
custom = "custom"
huggingface = "huggingface"
@json_schema_type
class HuggingfaceDatasetDef(BaseModel):
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
identifier: str = Field(
description="A unique name for the dataset",
)
dataset_name: str = Field(
description="The name of the dataset into HF (e.g. hellawag)",
)
kwargs: Dict[str, Any] = Field(
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
default_factory=dict,
)
@json_schema_type
class CustomDatasetDef(BaseModel):
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
identifier: str = Field(
description="A unique name for the dataset",
)
url: str = Field(
description="The URL to the dataset",
)
DatasetDef = Annotated[
Union[
HuggingfaceDatasetDef,
CustomDatasetDef,
],
Field(discriminator="type"),
]
class BaseDataset(ABC, Generic[TDatasetSample]):
def __init__(self) -> None:
self.type: str = self.__class__.__name__
@property
@abstractmethod
def dataset_id(self) -> str:
raise NotImplementedError()
@abstractmethod
def __iter__(self) -> Iterator[TDatasetSample]:
raise NotImplementedError()
@abstractmethod
def __str__(self) -> str:
raise NotImplementedError()
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
@abstractmethod
def load(self) -> None:
raise NotImplementedError()
class Datasets(Protocol):
@webmethod(route="/datasets/create")
def create_dataset(
self,
dataset: DatasetDef,
) -> None: ...
@webmethod(route="/datasets/get")
def get_dataset(
self,
dataset_identifier: str,
) -> DatasetDef: ...
@webmethod(route="/datasets/delete")
def delete_dataset(
self,
dataset_uuid: str,
) -> None: ...