# What does this PR do? Scheduler: cancel tasks on shutdown. Otherwise the currently running tasks will never exit (before they actually complete), which means the process can't be properly shut down (only with SIGKILL). Ideally, we let tasks know that they are about to shutdown and give them some time to do so; but in the lack of the mechanism, it's better to cancel than linger forever. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Start a long running task (e.g. torchtune or external kfp-provider training). Ctr-C the process in TTY. Confirm it exits in reasonable time. ``` ^CINFO: Shutting down INFO: Waiting for application shutdown. 13:32:26.187 - INFO - Shutting down 13:32:26.187 - INFO - Shutting down DatasetsRoutingTable 13:32:26.187 - INFO - Shutting down DatasetIORouter 13:32:26.187 - INFO - Shutting down TorchtuneKFPPostTrainingImpl Traceback (most recent call last): File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/base_events.py", line 687, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ asyncio.exceptions.CancelledError During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 109, in <module> executor_main() File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 101, in executor_main output_file = executor.execute() ^^^^^^^^^^^^^^^^^^ File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor.py", line 361, in execute result = self.func(**func_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/folders/45/1q1rx6cn7jbcn2ty852w0g_r0000gn/T/tmp.RKpPrvTWDD/ephemeral_component.py", line 118, in component asyncio.run(recipe.setup()) File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 194, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 123, in run raise KeyboardInterrupt() KeyboardInterrupt 13:32:31.219 - ERROR - Task 'component' finished with status FAILURE ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ INFO 2025-05-09 13:32:31,221 llama_stack.providers.utils.scheduler:221 scheduler: Job test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m finished with status [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m. ERROR 2025-05-09 13:32:31,223 llama_stack_provider_kfp_trainer.scheduler:54 scheduler: Job test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa failed. ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/src/llama_stack_provider_kfp_trainer/scheduler.py:45 │ │ in do │ │ │ │ 42 │ │ │ │ │ 43 │ │ │ job.status = JobStatus.running │ │ 44 │ │ │ try: │ │ ❱ 45 │ │ │ │ artifacts = self._to_artifacts(job.handler().output) │ │ 46 │ │ │ │ for artifact in artifacts: │ │ 47 │ │ │ │ │ on_artifact_collected_cb(artifact) │ │ 48 │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/base_compon │ │ ent.py:101 in __call__ │ │ │ │ 98 │ │ │ │ f'{self.name}() missing {len(missing_arguments)} required ' │ │ 99 │ │ │ │ f'{argument_or_arguments}: {arguments}.') │ │ 100 │ │ │ │ ❱ 101 │ │ return pipeline_task.PipelineTask( │ │ 102 │ │ │ component_spec=self.component_spec, │ │ 103 │ │ │ args=task_inputs, │ │ 104 │ │ │ execute_locally=pipeline_context.Pipeline.get_default_pipeline() is │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │ │ sk.py:187 in __init__ │ │ │ │ 184 │ │ ]) │ │ 185 │ │ │ │ 186 │ │ if execute_locally: │ │ ❱ 187 │ │ │ self._execute_locally(args=args) │ │ 188 │ │ │ 189 │ def _execute_locally(self, args: Dict[str, Any]) -> None: │ │ 190 │ │ """Execute the pipeline task locally. │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │ │ sk.py:197 in _execute_locally │ │ │ │ 194 │ │ from kfp.local import task_dispatcher │ │ 195 │ │ │ │ 196 │ │ if self.pipeline_spec is not None: │ │ ❱ 197 │ │ │ self._outputs = pipeline_orchestrator.run_local_pipeline( │ │ 198 │ │ │ │ pipeline_spec=self.pipeline_spec, │ │ 199 │ │ │ │ arguments=args, │ │ 200 │ │ │ ) │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:43 in run_local_pipeline │ │ │ │ 40 │ │ │ 41 │ # validate and access all global state in this function, not downstream │ │ 42 │ config.LocalExecutionConfig.validate() │ │ ❱ 43 │ return _run_local_pipeline_implementation( │ │ 44 │ │ pipeline_spec=pipeline_spec, │ │ 45 │ │ arguments=arguments, │ │ 46 │ │ raise_on_error=config.LocalExecutionConfig.instance.raise_on_error, │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:108 in _run_local_pipeline_implementation │ │ │ │ 105 │ │ │ ) │ │ 106 │ │ return outputs │ │ 107 │ elif dag_status == status.Status.FAILURE: │ │ ❱ 108 │ │ log_and_maybe_raise_for_failure( │ │ 109 │ │ │ pipeline_name=pipeline_name, │ │ 110 │ │ │ fail_stack=fail_stack, │ │ 111 │ │ │ raise_on_error=raise_on_error, │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:137 in log_and_maybe_raise_for_failure │ │ │ │ 134 │ │ logging_utils.format_task_name(task_name) for task_name in fail_stack) │ │ 135 │ msg = f'Pipeline {pipeline_name_with_color} finished with status │ │ {status_with_color}. Inner task failed: {task_chain_with_color}.' │ │ 136 │ if raise_on_error: │ │ ❱ 137 │ │ raise RuntimeError(msg) │ │ 138 │ with logging_utils.local_logger_context(): │ │ 139 │ │ logging.error(msg) │ │ 140 │ ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m finished with status [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m. INFO 2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down DistributionInspectImpl INFO 2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down ProviderImpl INFO: Application shutdown complete. INFO: Finished server process [26648] ``` [//]: # (## Documentation) Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com> |
||
---|---|---|
.github | ||
docs | ||
llama_stack | ||
rfcs | ||
scripts | ||
tests | ||
.coveragerc | ||
.gitignore | ||
.pre-commit-config.yaml | ||
.readthedocs.yaml | ||
CHANGELOG.md | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
install.sh | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook | Discord
✨🎉 Llama 4 Support 🎉✨
We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.
👋 Click here to see how to run Llama 4 models on Llama Stack
Note you need 8xH100 GPU-host to run these models
pip install -U llama_stack
MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>
# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu
# install client to interact with the server
pip install llama-stack-client
CLI
# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"
ChatCompletionResponse(
completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
logprobs=None,
metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)
Python SDK
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:8321")
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"
print(f"User> {prompt}")
response = client.inference.chat_completion(
model_id=model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
)
print(f"Assistant> {response.completion_message.content}")
As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!
🚀 One-Line Installer 🚀
To try Llama Stack locally, run:
curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/install.sh | bash
Overview
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry | Post Training |
---|---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | |
SambaNova | Hosted | ✅ | ✅ | ||||
Cerebras | Hosted | ✅ | |||||
Fireworks | Hosted | ✅ | ✅ | ✅ | |||
AWS Bedrock | Hosted | ✅ | ✅ | ||||
Together | Hosted | ✅ | ✅ | ✅ | |||
Groq | Hosted | ✅ | |||||
Ollama | Single Node | ✅ | |||||
TGI | Hosted and Single Node | ✅ | |||||
NVIDIA NIM | Hosted and Single Node | ✅ | |||||
Chroma | Single Node | ✅ | |||||
PG Vector | Single Node | ✅ | |||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | ||||
vLLM | Hosted and Single Node | ✅ | |||||
OpenAI | Hosted | ✅ | |||||
Anthropic | Hosted | ✅ | |||||
Gemini | Hosted | ✅ | |||||
watsonx | Hosted | ✅ | |||||
HuggingFace | Single Node | ✅ | |||||
TorchTune | Single Node | ✅ | |||||
NVIDIA NEMO | Hosted | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
SambaNova | llamastack/distribution-sambanova | Guide |
Cerebras | llamastack/distribution-cerebras | Guide |
Ollama | llamastack/distribution-ollama | Guide |
TGI | llamastack/distribution-tgi | Guide |
Together | llamastack/distribution-together | Guide |
Fireworks | llamastack/distribution-fireworks | Guide |
vLLM | llamastack/distribution-remote-vllm | Guide |
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.