mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
# What does this PR do? Adds the sentence transformer provider and the `all-MiniLM-L6-v2` embedding model to the default models to register in the run.yaml for all providers. ## Test Plan llama stack build --template together --image-type conda llama stack run ~/.llama/distributions/llamastack-together/together-run.yaml
62 lines
2.2 KiB
Python
62 lines
2.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.inference import EmbeddingsResponse, ModelType
|
|
|
|
# How to run this test:
|
|
# pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py
|
|
|
|
|
|
class TestEmbeddings:
|
|
@pytest.mark.asyncio
|
|
async def test_embeddings(self, inference_model, inference_stack):
|
|
inference_impl, models_impl = inference_stack
|
|
model = await models_impl.get_model(inference_model)
|
|
|
|
if model.model_type != ModelType.embedding:
|
|
pytest.skip("This test is only applicable for embedding models")
|
|
|
|
response = await inference_impl.embeddings(
|
|
model_id=inference_model,
|
|
contents=["Hello, world!"],
|
|
)
|
|
assert isinstance(response, EmbeddingsResponse)
|
|
assert len(response.embeddings) > 0
|
|
assert all(isinstance(embedding, list) for embedding in response.embeddings)
|
|
assert all(
|
|
isinstance(value, float)
|
|
for embedding in response.embeddings
|
|
for value in embedding
|
|
)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_batch_embeddings(self, inference_model, inference_stack):
|
|
inference_impl, models_impl = inference_stack
|
|
model = await models_impl.get_model(inference_model)
|
|
|
|
if model.model_type != ModelType.embedding:
|
|
pytest.skip("This test is only applicable for embedding models")
|
|
|
|
texts = ["Hello, world!", "This is a test", "Testing embeddings"]
|
|
|
|
response = await inference_impl.embeddings(
|
|
model_id=inference_model,
|
|
contents=texts,
|
|
)
|
|
|
|
assert isinstance(response, EmbeddingsResponse)
|
|
assert len(response.embeddings) == len(texts)
|
|
assert all(isinstance(embedding, list) for embedding in response.embeddings)
|
|
assert all(
|
|
isinstance(value, float)
|
|
for embedding in response.embeddings
|
|
for value in embedding
|
|
)
|
|
|
|
embedding_dim = len(response.embeddings[0])
|
|
assert all(len(embedding) == embedding_dim for embedding in response.embeddings)
|