mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? Cleans up how we provide sampling params. Earlier, strategy was an enum and all params (top_p, temperature, top_k) across all strategies were grouped. We now have a strategy union object with each strategy (greedy, top_p, top_k) having its corresponding params. Earlier, ``` class SamplingParams: strategy: enum () top_p, temperature, top_k and other params ``` However, the `strategy` field was not being used in any providers making it confusing to know the exact sampling behavior purely based on the params since you could pass temperature, top_p, top_k and how the provider would interpret those would not be clear. Hence we introduced -- a union where the strategy and relevant params are all clubbed together to avoid this confusion. Have updated all providers, tests, notebooks, readme and otehr places where sampling params was being used to use the new format. ## Test Plan `pytest llama_stack/providers/tests/inference/groq/test_groq_utils.py` // inference on ollama, fireworks and together `with-proxy pytest -v -s -k "ollama" --inference-model="meta-llama/Llama-3.1-8B-Instruct" llama_stack/providers/tests/inference/test_text_inference.py ` // agents on fireworks `pytest -v -s -k 'fireworks and create_agent' --inference-model="meta-llama/Llama-3.1-8B-Instruct" llama_stack/providers/tests/agents/test_agents.py --safety-shield="meta-llama/Llama-Guard-3-8B"` ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [X] Ran pre-commit to handle lint / formatting issues. - [X] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [X] Updated relevant documentation. - [X] Wrote necessary unit or integration tests. --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
485 lines
17 KiB
Python
485 lines
17 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import pytest
|
|
|
|
from llama_models.llama3.api.datatypes import (
|
|
SamplingParams,
|
|
StopReason,
|
|
ToolCall,
|
|
ToolDefinition,
|
|
ToolParamDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
from llama_stack.apis.common.content_types import ToolCallParseStatus
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
JsonSchemaResponseFormat,
|
|
LogProbConfig,
|
|
SystemMessage,
|
|
ToolChoice,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
|
|
from .utils import group_chunks
|
|
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
|
|
# -m "(fireworks or ollama) and llama_3b"
|
|
# --env FIREWORKS_API_KEY=<your_api_key>
|
|
|
|
|
|
def get_expected_stop_reason(model: str):
|
|
return (
|
|
StopReason.end_of_message
|
|
if ("Llama3.1" in model or "Llama-3.1" in model)
|
|
else StopReason.end_of_turn
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def common_params(inference_model):
|
|
return {
|
|
"tool_choice": ToolChoice.auto,
|
|
"tool_prompt_format": (
|
|
ToolPromptFormat.json
|
|
if ("Llama3.1" in inference_model or "Llama-3.1" in inference_model)
|
|
else ToolPromptFormat.python_list
|
|
),
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_messages():
|
|
return [
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="What's the weather like today?"),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_tool_definition():
|
|
return ToolDefinition(
|
|
tool_name="get_weather",
|
|
description="Get the current weather",
|
|
parameters={
|
|
"location": ToolParamDefinition(
|
|
param_type="string",
|
|
description="The city and state, e.g. San Francisco, CA",
|
|
),
|
|
},
|
|
)
|
|
|
|
|
|
class TestInference:
|
|
# Session scope for asyncio because the tests in this class all
|
|
# share the same provider instance.
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_model_list(self, inference_model, inference_stack):
|
|
_, models_impl = inference_stack
|
|
response = await models_impl.list_models()
|
|
assert isinstance(response, list)
|
|
assert len(response) >= 1
|
|
assert all(isinstance(model, Model) for model in response)
|
|
|
|
model_def = None
|
|
for model in response:
|
|
if model.identifier == inference_model:
|
|
model_def = model
|
|
break
|
|
|
|
assert model_def is not None
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_completion(self, inference_model, inference_stack):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
"inline::meta-reference",
|
|
"remote::ollama",
|
|
"remote::tgi",
|
|
"remote::together",
|
|
"remote::fireworks",
|
|
"remote::nvidia",
|
|
"remote::cerebras",
|
|
):
|
|
pytest.skip("Other inference providers don't support completion() yet")
|
|
|
|
response = await inference_impl.completion(
|
|
content="Micheael Jordan is born in ",
|
|
stream=False,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
)
|
|
|
|
assert isinstance(response, CompletionResponse)
|
|
assert "1963" in response.content
|
|
|
|
chunks = [
|
|
r
|
|
async for r in await inference_impl.completion(
|
|
content="Roses are red,",
|
|
stream=True,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
)
|
|
]
|
|
|
|
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
|
assert len(chunks) >= 1
|
|
last = chunks[-1]
|
|
assert last.stop_reason == StopReason.out_of_tokens
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_completion_logprobs(self, inference_model, inference_stack):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
# "remote::nvidia", -- provider doesn't provide all logprobs
|
|
):
|
|
pytest.skip("Other inference providers don't support completion() yet")
|
|
|
|
response = await inference_impl.completion(
|
|
content="Micheael Jordan is born in ",
|
|
stream=False,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=5,
|
|
),
|
|
logprobs=LogProbConfig(
|
|
top_k=3,
|
|
),
|
|
)
|
|
|
|
assert isinstance(response, CompletionResponse)
|
|
assert 1 <= len(response.logprobs) <= 5
|
|
assert response.logprobs, "Logprobs should not be empty"
|
|
assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs)
|
|
|
|
chunks = [
|
|
r
|
|
async for r in await inference_impl.completion(
|
|
content="Roses are red,",
|
|
stream=True,
|
|
model_id=inference_model,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=5,
|
|
),
|
|
logprobs=LogProbConfig(
|
|
top_k=3,
|
|
),
|
|
)
|
|
]
|
|
|
|
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
|
assert (
|
|
1 <= len(chunks) <= 6
|
|
) # why 6 and not 5? the response may have an extra closing chunk, e.g. for usage or stop_reason
|
|
for chunk in chunks:
|
|
if (
|
|
chunk.delta.type == "text" and chunk.delta.text
|
|
): # if there's a token, we expect logprobs
|
|
assert chunk.logprobs, "Logprobs should not be empty"
|
|
assert all(
|
|
len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs
|
|
)
|
|
else: # no token, no logprobs
|
|
assert not chunk.logprobs, "Logprobs should be empty"
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
@pytest.mark.skip("This test is not quite robust")
|
|
async def test_completion_structured_output(self, inference_model, inference_stack):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
"inline::meta-reference",
|
|
"remote::ollama",
|
|
"remote::tgi",
|
|
"remote::together",
|
|
"remote::fireworks",
|
|
"remote::nvidia",
|
|
"remote::vllm",
|
|
"remote::cerebras",
|
|
):
|
|
pytest.skip(
|
|
"Other inference providers don't support structured output in completions yet"
|
|
)
|
|
|
|
class Output(BaseModel):
|
|
name: str
|
|
year_born: str
|
|
year_retired: str
|
|
|
|
user_input = "Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003."
|
|
response = await inference_impl.completion(
|
|
model_id=inference_model,
|
|
content=user_input,
|
|
stream=False,
|
|
sampling_params=SamplingParams(
|
|
max_tokens=50,
|
|
),
|
|
response_format=JsonSchemaResponseFormat(
|
|
json_schema=Output.model_json_schema(),
|
|
),
|
|
)
|
|
assert isinstance(response, CompletionResponse)
|
|
assert isinstance(response.content, str)
|
|
|
|
answer = Output.model_validate_json(response.content)
|
|
assert answer.name == "Michael Jordan"
|
|
assert answer.year_born == "1963"
|
|
assert answer.year_retired == "2003"
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_non_streaming(
|
|
self, inference_model, inference_stack, common_params, sample_messages
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=sample_messages,
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert response.completion_message.role == "assistant"
|
|
assert isinstance(response.completion_message.content, str)
|
|
assert len(response.completion_message.content) > 0
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_structured_output(
|
|
self, inference_model, inference_stack, common_params
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
"inline::meta-reference",
|
|
"remote::ollama",
|
|
"remote::fireworks",
|
|
"remote::tgi",
|
|
"remote::together",
|
|
"remote::vllm",
|
|
"remote::nvidia",
|
|
):
|
|
pytest.skip("Other inference providers don't support structured output yet")
|
|
|
|
class AnswerFormat(BaseModel):
|
|
first_name: str
|
|
last_name: str
|
|
year_of_birth: int
|
|
num_seasons_in_nba: int
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=[
|
|
# we include context about Michael Jordan in the prompt so that the test is
|
|
# focused on the funtionality of the model and not on the information embedded
|
|
# in the model. Llama 3.2 3B Instruct tends to think MJ played for 14 seasons.
|
|
SystemMessage(
|
|
content=(
|
|
"You are a helpful assistant.\n\n"
|
|
"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons."
|
|
)
|
|
),
|
|
UserMessage(content="Please give me information about Michael Jordan."),
|
|
],
|
|
stream=False,
|
|
response_format=JsonSchemaResponseFormat(
|
|
json_schema=AnswerFormat.model_json_schema(),
|
|
),
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert response.completion_message.role == "assistant"
|
|
assert isinstance(response.completion_message.content, str)
|
|
|
|
answer = AnswerFormat.model_validate_json(response.completion_message.content)
|
|
assert answer.first_name == "Michael"
|
|
assert answer.last_name == "Jordan"
|
|
assert answer.year_of_birth == 1963
|
|
assert answer.num_seasons_in_nba == 15
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=[
|
|
SystemMessage(content="You are a helpful assistant."),
|
|
UserMessage(content="Please give me information about Michael Jordan."),
|
|
],
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert isinstance(response.completion_message.content, str)
|
|
|
|
with pytest.raises(ValidationError):
|
|
AnswerFormat.model_validate_json(response.completion_message.content)
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_streaming(
|
|
self, inference_model, inference_stack, common_params, sample_messages
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
response = [
|
|
r
|
|
async for r in await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=sample_messages,
|
|
stream=True,
|
|
**common_params,
|
|
)
|
|
]
|
|
|
|
assert len(response) > 0
|
|
assert all(
|
|
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
|
|
)
|
|
grouped = group_chunks(response)
|
|
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
|
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
|
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
|
|
|
end = grouped[ChatCompletionResponseEventType.complete][0]
|
|
assert end.event.stop_reason == StopReason.end_of_turn
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_with_tool_calling(
|
|
self,
|
|
inference_model,
|
|
inference_stack,
|
|
common_params,
|
|
sample_messages,
|
|
sample_tool_definition,
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if (
|
|
provider.__provider_spec__.provider_type == "remote::groq"
|
|
and "Llama-3.2" in inference_model
|
|
):
|
|
# TODO(aidand): Remove this skip once Groq's tool calling for Llama3.2 works better
|
|
pytest.skip("Groq's tool calling for Llama3.2 doesn't work very well")
|
|
|
|
messages = sample_messages + [
|
|
UserMessage(
|
|
content="What's the weather like in San Francisco?",
|
|
)
|
|
]
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=messages,
|
|
tools=[sample_tool_definition],
|
|
stream=False,
|
|
**common_params,
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
|
|
message = response.completion_message
|
|
|
|
# This is not supported in most providers :/ they don't return eom_id / eot_id
|
|
# stop_reason = get_expected_stop_reason(inference_settings["common_params"]["model"])
|
|
# assert message.stop_reason == stop_reason
|
|
assert message.tool_calls is not None
|
|
assert len(message.tool_calls) > 0
|
|
|
|
call = message.tool_calls[0]
|
|
assert call.tool_name == "get_weather"
|
|
assert "location" in call.arguments
|
|
assert "San Francisco" in call.arguments["location"]
|
|
|
|
@pytest.mark.asyncio(loop_scope="session")
|
|
async def test_chat_completion_with_tool_calling_streaming(
|
|
self,
|
|
inference_model,
|
|
inference_stack,
|
|
common_params,
|
|
sample_messages,
|
|
sample_tool_definition,
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if (
|
|
provider.__provider_spec__.provider_type == "remote::groq"
|
|
and "Llama-3.2" in inference_model
|
|
):
|
|
# TODO(aidand): Remove this skip once Groq's tool calling for Llama3.2 works better
|
|
pytest.skip("Groq's tool calling for Llama3.2 doesn't work very well")
|
|
|
|
messages = sample_messages + [
|
|
UserMessage(
|
|
content="What's the weather like in San Francisco?",
|
|
)
|
|
]
|
|
|
|
response = [
|
|
r
|
|
async for r in await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=messages,
|
|
tools=[sample_tool_definition],
|
|
stream=True,
|
|
**common_params,
|
|
)
|
|
]
|
|
assert len(response) > 0
|
|
assert all(
|
|
isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response
|
|
)
|
|
grouped = group_chunks(response)
|
|
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
|
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
|
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
|
|
|
# This is not supported in most providers :/ they don't return eom_id / eot_id
|
|
# expected_stop_reason = get_expected_stop_reason(
|
|
# inference_settings["common_params"]["model"]
|
|
# )
|
|
# end = grouped[ChatCompletionResponseEventType.complete][0]
|
|
# assert end.event.stop_reason == expected_stop_reason
|
|
|
|
if "Llama3.1" in inference_model:
|
|
assert all(
|
|
chunk.event.delta.type == "tool_call"
|
|
for chunk in grouped[ChatCompletionResponseEventType.progress]
|
|
)
|
|
first = grouped[ChatCompletionResponseEventType.progress][0]
|
|
if not isinstance(
|
|
first.event.delta.content, ToolCall
|
|
): # first chunk may contain entire call
|
|
assert first.event.delta.parse_status == ToolCallParseStatus.started
|
|
|
|
last = grouped[ChatCompletionResponseEventType.progress][-1]
|
|
# assert last.event.stop_reason == expected_stop_reason
|
|
assert last.event.delta.parse_status == ToolCallParseStatus.succeeded
|
|
assert isinstance(last.event.delta.content, ToolCall)
|
|
|
|
call = last.event.delta.content
|
|
assert call.tool_name == "get_weather"
|
|
assert "location" in call.arguments
|
|
assert "San Francisco" in call.arguments["location"]
|