llama-stack-mirror/llama_stack/providers/inline/inference/meta_reference/config.py
Mustafa Elbehery a5c3362bcd
chore(api): add mypy coverage to meta_reference_config (#2664)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR adds static type coverage to `llama-stack`

Part of https://github.com/meta-llama/llama-stack/issues/2647

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-07-09 10:24:30 +02:00

68 lines
2.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, field_validator
from llama_stack.apis.inference import QuantizationConfig
from llama_stack.providers.utils.inference import supported_inference_models
class MetaReferenceInferenceConfig(BaseModel):
# this is a placeholder to indicate inference model id
# the actual inference model id is dtermined by the moddel id in the request
# Note: you need to register the model before using it for inference
# models in the resouce list in the run.yaml config will be registered automatically
model: str | None = None
torch_seed: int | None = None
max_seq_len: int = 4096
max_batch_size: int = 1
model_parallel_size: int | None = None
# when this is False, we assume that the distributed process group is setup by someone
# outside of this code (e.g., when run inside `torchrun`). that is useful for clients
# (including our testing code) who might be using llama-stack as a library.
create_distributed_process_group: bool = True
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
# can override by specifying the directory explicitly
checkpoint_dir: str | None = None
quantization: QuantizationConfig | None = None
@field_validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = supported_inference_models()
descriptors = [m.descriptor() for m in permitted_models]
repos = [m.huggingface_repo for m in permitted_models if m.huggingface_repo is not None]
if model not in (descriptors + repos):
model_list = "\n\t".join(repos)
raise ValueError(f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]")
return model
@classmethod
def sample_run_config(
cls,
model: str = "Llama3.2-3B-Instruct",
checkpoint_dir: str = "${env.CHECKPOINT_DIR:=null}",
quantization_type: str = "${env.QUANTIZATION_TYPE:=bf16}",
model_parallel_size: str = "${env.MODEL_PARALLEL_SIZE:=0}",
max_batch_size: str = "${env.MAX_BATCH_SIZE:=1}",
max_seq_len: str = "${env.MAX_SEQ_LEN:=4096}",
**kwargs,
) -> dict[str, Any]:
return {
"model": model,
"checkpoint_dir": checkpoint_dir,
"quantization": {
"type": quantization_type,
},
"model_parallel_size": model_parallel_size,
"max_batch_size": max_batch_size,
"max_seq_len": max_seq_len,
}