mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
143 lines
4.5 KiB
Python
143 lines
4.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import tempfile
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.models import ModelInput, ModelType
|
|
from llama_stack.distribution.datatypes import Api, Provider
|
|
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
|
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
|
|
from llama_stack.providers.remote.memory.chroma import ChromaRemoteImplConfig
|
|
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
|
|
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
|
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
|
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
|
|
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
|
from ..env import get_env_or_fail
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def embedding_model(request):
|
|
if hasattr(request, "param"):
|
|
return request.param
|
|
return request.config.getoption("--embedding-model", None)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_remote() -> ProviderFixture:
|
|
return remote_stack_fixture()
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_faiss() -> ProviderFixture:
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissImplConfig(
|
|
kvstore=SqliteKVStoreConfig(db_path=temp_file.name).model_dump(),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_pgvector() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="pgvector",
|
|
provider_type="remote::pgvector",
|
|
config=PGVectorConfig(
|
|
host=os.getenv("PGVECTOR_HOST", "localhost"),
|
|
port=os.getenv("PGVECTOR_PORT", 5432),
|
|
db=get_env_or_fail("PGVECTOR_DB"),
|
|
user=get_env_or_fail("PGVECTOR_USER"),
|
|
password=get_env_or_fail("PGVECTOR_PASSWORD"),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_weaviate() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="weaviate",
|
|
provider_type="remote::weaviate",
|
|
config=WeaviateConfig().model_dump(),
|
|
)
|
|
],
|
|
provider_data=dict(
|
|
weaviate_api_key=get_env_or_fail("WEAVIATE_API_KEY"),
|
|
weaviate_cluster_url=get_env_or_fail("WEAVIATE_CLUSTER_URL"),
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_chroma() -> ProviderFixture:
|
|
url = os.getenv("CHROMA_URL")
|
|
if url:
|
|
config = ChromaRemoteImplConfig(url=url)
|
|
provider_type = "remote::chromadb"
|
|
else:
|
|
if not os.getenv("CHROMA_DB_PATH"):
|
|
raise ValueError("CHROMA_DB_PATH or CHROMA_URL must be set")
|
|
config = ChromaInlineImplConfig(db_path=os.getenv("CHROMA_DB_PATH"))
|
|
provider_type = "inline::chromadb"
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="chroma",
|
|
provider_type=provider_type,
|
|
config=config.model_dump(),
|
|
)
|
|
]
|
|
)
|
|
|
|
|
|
MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def memory_stack(embedding_model, request):
|
|
fixture_dict = request.param
|
|
|
|
providers = {}
|
|
provider_data = {}
|
|
for key in ["inference", "memory"]:
|
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
|
providers[key] = fixture.providers
|
|
if fixture.provider_data:
|
|
provider_data.update(fixture.provider_data)
|
|
|
|
test_stack = await construct_stack_for_test(
|
|
[Api.memory, Api.inference],
|
|
providers,
|
|
provider_data,
|
|
models=[
|
|
ModelInput(
|
|
model_id=embedding_model,
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
|
|
},
|
|
)
|
|
],
|
|
)
|
|
|
|
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]
|