llama-stack-mirror/tests/integration/fixtures/recordable_mock.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

221 lines
8.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import importlib
import json
import os
import re
from datetime import datetime
from enum import Enum
from pathlib import Path
class RecordableMock:
"""A mock that can record and replay API responses."""
def __init__(self, real_func, cache_dir, func_name, record=False):
self.real_func = real_func
self.json_path = Path(cache_dir) / f"{func_name}.json"
self.record = record
self.cache = {}
# Load existing cache if available and not recording
if self.json_path.exists():
try:
with open(self.json_path) as f:
self.cache = json.load(f)
except Exception as e:
print(f"Error loading cache from {self.json_path}: {e}")
raise
async def __call__(self, *args, **kwargs):
"""
Returns a coroutine that when awaited returns the result or an async generator,
matching the behavior of the original function.
"""
# Create a cache key from the arguments
key = self._create_cache_key(args, kwargs)
if self.record:
# In record mode, always call the real function
real_result = self.real_func(*args, **kwargs)
# If it's a coroutine, we need to create a wrapper coroutine
if hasattr(real_result, "__await__"):
# Define a coroutine function that will record the result
async def record_coroutine():
try:
# Await the real coroutine
result = await real_result
# Check if the result is an async generator
if hasattr(result, "__aiter__"):
# It's an async generator, so we need to record its chunks
chunks = []
# Create and return a new async generator that records chunks
async def recording_generator():
nonlocal chunks
async for chunk in result:
chunks.append(chunk)
yield chunk
# After all chunks are yielded, save to cache
self.cache[key] = {"type": "generator", "chunks": chunks}
self._save_cache()
return recording_generator()
else:
# It's a regular result, save it to cache
self.cache[key] = {"type": "value", "value": result}
self._save_cache()
return result
except Exception as e:
print(f"Error in recording mode: {e}")
raise
return await record_coroutine()
else:
# It's already an async generator, so we need to record its chunks
async def record_generator():
chunks = []
async for chunk in real_result:
chunks.append(chunk)
yield chunk
# After all chunks are yielded, save to cache
self.cache[key] = {"type": "generator", "chunks": chunks}
self._save_cache()
return record_generator()
elif key not in self.cache:
# In replay mode, if the key is not in the cache, throw an error
raise KeyError(
f"No cached response found for key: {key}\nRun with --record-responses to record this response."
)
else:
# In replay mode with a cached response
cached_data = self.cache[key]
# Check if it's a value or chunks
if cached_data.get("type") == "value":
# It's a regular value
return self._reconstruct_object(cached_data["value"])
else:
# It's chunks from an async generator
async def replay_generator():
for chunk in cached_data["chunks"]:
yield self._reconstruct_object(chunk)
return replay_generator()
def _create_cache_key(self, args, kwargs):
"""Create a hashable key from the function arguments, ignoring auto-generated IDs."""
# Convert to JSON strings with sorted keys
key = json.dumps((args, kwargs), sort_keys=True, default=self._json_default)
# Post-process the key with regex to replace IDs with placeholders
# Replace UUIDs and similar patterns
key = re.sub(r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}", "<UUID>", key)
# Replace temporary file paths created by tempfile.mkdtemp()
key = re.sub(r"/var/folders/[^,'\"\s]+", "<TEMP_FILE>", key)
# Replace /tmp/ paths which are also commonly used for temporary files
key = re.sub(r"/tmp/[^,'\"\s]+", "<TEMP_FILE>", key)
return key
def _save_cache(self):
"""Save the cache to disk in JSON format."""
os.makedirs(self.json_path.parent, exist_ok=True)
# Write the JSON file with pretty formatting
try:
with open(self.json_path, "w") as f:
json.dump(self.cache, f, indent=2, sort_keys=True, default=self._json_default)
# write another empty line at the end of the file to make pre-commit happy
f.write("\n")
except Exception as e:
print(f"Error saving JSON cache: {e}")
def _json_default(self, obj):
"""Default function for JSON serialization of objects."""
if isinstance(obj, datetime):
return {
"__datetime__": obj.isoformat(),
"__module__": obj.__class__.__module__,
"__class__": obj.__class__.__name__,
}
if isinstance(obj, Enum):
return {
"__enum__": obj.__class__.__name__,
"value": obj.value,
"__module__": obj.__class__.__module__,
}
# Handle Pydantic models
if hasattr(obj, "model_dump"):
model_data = obj.model_dump()
return {
"__pydantic__": obj.__class__.__name__,
"__module__": obj.__class__.__module__,
"data": model_data,
}
def _reconstruct_object(self, data):
"""Reconstruct an object from its JSON representation."""
if isinstance(data, dict):
# Check if this is a serialized datetime
if "__datetime__" in data:
try:
module_name = data.get("__module__", "datetime")
class_name = data.get("__class__", "datetime")
# Try to import the specific datetime class
module = importlib.import_module(module_name)
dt_class = getattr(module, class_name)
# Parse the ISO format string
dt = dt_class.fromisoformat(data["__datetime__"])
return dt
except (ImportError, AttributeError, ValueError) as e:
print(f"Error reconstructing datetime: {e}")
return data
# Check if this is a serialized enum
elif "__enum__" in data:
try:
module_name = data.get("__module__", "builtins")
enum_class = self._import_class(module_name, data["__enum__"])
return enum_class(data["value"])
except (ImportError, AttributeError) as e:
print(f"Error reconstructing enum: {e}")
return data
# Check if this is a serialized Pydantic model
elif "__pydantic__" in data:
try:
module_name = data.get("__module__", "builtins")
model_class = self._import_class(module_name, data["__pydantic__"])
return model_class(**self._reconstruct_object(data["data"]))
except (ImportError, AttributeError) as e:
print(f"Error reconstructing Pydantic model: {e}")
return data
# Regular dictionary
return {k: self._reconstruct_object(v) for k, v in data.items()}
# Handle lists
elif isinstance(data, list):
return [self._reconstruct_object(item) for item in data]
# Return primitive types as is
return data
def _import_class(self, module_name, class_name):
"""Import a class from a module."""
module = __import__(module_name, fromlist=[class_name])
return getattr(module, class_name)