mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 05:24:39 +00:00
# What does this PR do? ## Test Plan # What does this PR do? ## Test Plan # What does this PR do? ## Test Plan Completes the refactoring started in previous commit by: 1. **Fix library client** (critical): Add logic to detect Pydantic model parameters and construct them properly from request bodies. The key fix is to NOT exclude any params when converting the body for Pydantic models - we need all fields to pass to the Pydantic constructor. Before: _convert_body excluded all params, leaving body empty for Pydantic construction After: Check for Pydantic params first, skip exclusion, construct model with full body 2. **Update remaining providers** to use new Pydantic-based signatures: - litellm_openai_mixin: Extract extra fields via __pydantic_extra__ - databricks: Use TYPE_CHECKING import for params type - llama_openai_compat: Use TYPE_CHECKING import for params type - sentence_transformers: Update method signatures to use params 3. **Update unit tests** to use new Pydantic signature: - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams This fixes test failures where the library client was trying to construct Pydantic models with empty dictionaries. The previous fix had a bug: it called _convert_body() which only keeps fields that match function parameter names. For Pydantic methods with signature: openai_chat_completion(params: OpenAIChatCompletionRequestParams) The signature only has 'params', but the body has 'model', 'messages', etc. So _convert_body() returned an empty dict. Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body directly to construct the Pydantic model (after stripping NOT_GIVENs). This properly fixes the ValidationError where required fields were missing. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True.
127 lines
4.6 KiB
Python
127 lines
4.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from collections.abc import AsyncIterator
|
|
from typing import Any
|
|
|
|
from llama_stack_client import AsyncLlamaStackClient
|
|
|
|
from llama_stack.apis.inference import (
|
|
Inference,
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAIChatCompletionRequestParams,
|
|
OpenAICompletion,
|
|
OpenAICompletionRequestParams,
|
|
OpenAIEmbeddingsResponse,
|
|
)
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.core.library_client import convert_pydantic_to_json_value
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
|
|
from .config import PassthroughImplConfig
|
|
|
|
|
|
class PassthroughInferenceAdapter(Inference):
|
|
def __init__(self, config: PassthroughImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self)
|
|
self.config = config
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
return model
|
|
|
|
def _get_client(self) -> AsyncLlamaStackClient:
|
|
passthrough_url = None
|
|
passthrough_api_key = None
|
|
provider_data = None
|
|
|
|
if self.config.url is not None:
|
|
passthrough_url = self.config.url
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_url:
|
|
raise ValueError(
|
|
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
|
|
)
|
|
passthrough_url = provider_data.passthrough_url
|
|
|
|
if self.config.api_key is not None:
|
|
passthrough_api_key = self.config.api_key.get_secret_value()
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_api_key:
|
|
raise ValueError(
|
|
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
|
|
)
|
|
passthrough_api_key = provider_data.passthrough_api_key
|
|
|
|
return AsyncLlamaStackClient(
|
|
base_url=passthrough_url,
|
|
api_key=passthrough_api_key,
|
|
provider_data=provider_data,
|
|
)
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
async def openai_completion(
|
|
self,
|
|
params: OpenAICompletionRequestParams,
|
|
) -> OpenAICompletion:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(params.model)
|
|
|
|
# Update model with provider resource ID
|
|
params.model = model_obj.provider_resource_id
|
|
|
|
# Convert Pydantic model to dict, including extra fields
|
|
request_params = params.model_dump(exclude_none=True)
|
|
|
|
return await client.inference.openai_completion(**request_params)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
params: OpenAIChatCompletionRequestParams,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(params.model)
|
|
|
|
# Update model with provider resource ID
|
|
params.model = model_obj.provider_resource_id
|
|
|
|
# Convert Pydantic model to dict, including extra fields
|
|
request_params = params.model_dump(exclude_none=True)
|
|
|
|
return await client.inference.openai_chat_completion(**request_params)
|
|
|
|
def cast_value_to_json_dict(self, request_params: dict[str, Any]) -> dict[str, Any]:
|
|
json_params = {}
|
|
for key, value in request_params.items():
|
|
json_input = convert_pydantic_to_json_value(value)
|
|
if isinstance(json_input, dict):
|
|
json_input = {k: v for k, v in json_input.items() if v is not None}
|
|
elif isinstance(json_input, list):
|
|
json_input = [x for x in json_input if x is not None]
|
|
new_input = []
|
|
for x in json_input:
|
|
if isinstance(x, dict):
|
|
x = {k: v for k, v in x.items() if v is not None}
|
|
new_input.append(x)
|
|
json_input = new_input
|
|
|
|
json_params[key] = json_input
|
|
|
|
return json_params
|