llama-stack-mirror/source/api_definitions.py
Raghotham Murthy ab44e9c862 added more docs
2024-07-11 03:09:45 -07:00

589 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional, Protocol, Set, Tuple, Union
import yaml
from agentic_system_types import (
AgenticSystemTurn,
ExecutionStepType,
MemoryBank,
MemoryBankDocument,
SafetyViolation,
)
from model_types import (
BuiltinTool,
Content,
Dialog,
InstructModel,
Message,
PretrainedModel,
RewardModel,
SamplingParams,
ShieldConfig,
StopReason,
ToolCall,
ToolDefinition,
ToolResponse,
URL,
)
from post_training_types import (
Checkpoint,
Dataset,
DoraFinetuningConfig,
DPOAlignmentConfig,
FinetuningAlgorithm,
LoraFinetuningConfig,
OptimizerConfig,
PostTrainingJobLogStream,
PostTrainingJobStatus,
QLoraFinetuningConfig,
RLHFAlgorithm,
TrainingConfig,
)
from pyopenapi import Info, Options, Server, Specification, webmethod
from strong_typing.schema import json_schema_type
@json_schema_type
@dataclass
class CompletionRequest:
content: Content
model: PretrainedModel
sampling_params: SamplingParams = SamplingParams()
max_tokens: int = 0
stream: bool = False
logprobs: bool = False
@json_schema_type
@dataclass
class CompletionResponse:
"""Normal completion response."""
content: Content
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class CompletionResponseStreamChunk:
"""streamed completion response."""
text_delta: str
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class ChatCompletionRequest:
model: InstructModel
dialog: Dialog
sampling_params: SamplingParams = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
max_tokens: int = 0
stream: bool = False
logprobs: bool = False
@json_schema_type
@dataclass
class ChatCompletionResponse:
"""Normal chat completion response."""
content: Content
# note: multiple tool calls can be generated in a single response
tool_calls: List[ToolCall] = field(default_factory=list)
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class ChatCompletionResponseStreamChunk:
"""Streamed chat completion response. The actual response is a series of such objects."""
text_delta: str
stop_reason: Optional[StopReason] = None
tool_call: Optional[ToolCall] = None
@json_schema_type
@dataclass
class BatchCompletionRequest:
model: PretrainedModel
content_batch: List[Content]
sampling_params: SamplingParams = SamplingParams()
max_tokens: int = 0
logprobs: bool = False
@json_schema_type
@dataclass
class BatchChatCompletionRequest:
model: InstructModel
batch_dialogs: List[Dialog]
sampling_params: SamplingParams = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
max_tokens: int = 0
logprobs: bool = False
class Inference(Protocol):
@webmethod(route="/inference/completion")
def post_completion(
self,
request: CompletionRequest,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
@webmethod(route="/inference/chat_completion")
def post_chat_completion(
self,
request: ChatCompletionRequest,
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
@webmethod(route="/inference/batch_completion")
def post_batch_completion(
self,
request: BatchCompletionRequest,
) -> List[CompletionResponse]: ...
@webmethod(route="/inference/batch_chat_completion")
def post_batch_chat_completion(
self,
request: BatchChatCompletionRequest,
) -> List[ChatCompletionResponse]: ...
@dataclass
class AgenticSystemCreateRequest:
uuid: str
instructions: str
model: InstructModel
# zero-shot or built-in tool configurations as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
# tools which aren't executable are emitted as tool calls which the users can
# execute themselves.
executable_tools: Set[str] = field(default_factory=set)
memory_bank_uuids: List[str] = field(default_factory=list)
input_shields: List[ShieldConfig] = field(default_factory=list)
output_shields: List[ShieldConfig] = field(default_factory=list)
@json_schema_type
@dataclass
class AgenticSystemCreateResponse:
agent_uuid: str
@json_schema_type
@dataclass
class AgenticSystemExecuteRequest:
agent_uuid: str
messages: List[Message]
turn_history: List[AgenticSystemTurn] = None
stream: bool = False
@json_schema_type
@dataclass
class AgenticSystemExecuteResponse:
"""non-stream response from the agentic system."""
turn: AgenticSystemTurn
class AgenticSystemExecuteResponseEventType(Enum):
"""The type of event."""
step_start = "step_start"
step_end = "step_end"
step_progress = "step_progress"
@json_schema_type
@dataclass
class AgenticSystemExecuteResponseStreamChunk:
"""Streamed agent execution response."""
event_type: AgenticSystemExecuteResponseEventType
step_uuid: str
step_type: ExecutionStepType
# TODO(ashwin): maybe add more structure here and do this as a proper tagged union
violation: Optional[SafetyViolation] = None
tool_call: Optional[ToolCall] = None
tool_response_delta: Optional[ToolResponse] = None
response_text_delta: Optional[str] = None
retrieved_document: Optional[MemoryBankDocument] = None
stop_reason: Optional[StopReason] = None
class AgenticSystem(Protocol):
@webmethod(route="/agentic_system/create")
def create_agentic_system(
self,
request: AgenticSystemCreateRequest,
) -> AgenticSystemCreateResponse: ...
@webmethod(route="/agentic_system/execute")
def create_agentic_system_execute(
self,
request: AgenticSystemExecuteRequest,
) -> Union[
AgenticSystemExecuteResponse, AgenticSystemExecuteResponseStreamChunk
]: ...
@webmethod(route="/agentic_system/delete")
def delete_agentic_system(
self,
agent_id: str,
) -> None: ...
class MemoryBanks(Protocol):
@webmethod(route="/memory_banks/create")
def post_create_memory_bank(
self,
bank_uuid: str,
bank_name: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_banks/get")
def get_memory_banks(
self
) -> List[MemoryBank]: ...
@webmethod(route="/memory_banks/drop")
def delete_memory_bank(
self,
bank_uuid: str,
) -> str: ...
@webmethod(route="/memory_bank/insert")
def post_insert_memory_documents(
self,
bank_uuid: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_bank/update")
def post_update_memory_documents(
self,
bank_uuid: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_bank/get")
def get_memory_documents(
self,
bank_uuid: str,
document_uuids: List[str],
) -> List[MemoryBankDocument]: ...
@webmethod(route="/memory_bank/delete")
def delete_memory_documents(
self,
bank_uuid: str,
document_uuids: List[str],
) -> List[str]: ...
@dataclass
class KPromptGenerations:
dialog: Dialog
k_generations: List[Message]
@json_schema_type
@dataclass
class ScoredMessage:
message: Message
score: float
@json_schema_type
@dataclass
class KScoredPromptGenerations:
prompt: Message
k_scored_generations: List[ScoredMessage]
@json_schema_type
@dataclass
class RewardScoringRequest:
"""Request to score a reward function. A list of prompts and a list of responses per prompt."""
prompt_generations: List[KPromptGenerations]
model: RewardModel
@json_schema_type
@dataclass
class RewardScoringResponse:
"""Response from the reward scoring. Batch of (prompt, response, score) tuples that pass the threshold."""
scored_generations: List[KScoredPromptGenerations]
class RewardScoring(Protocol):
@webmethod(route="/reward_scoring/score")
def post_score(
self,
request: RewardScoringRequest,
) -> Union[RewardScoringResponse]: ...
class FilteringFunction(Enum):
"""The type of filtering function."""
none = "none"
random = "random"
top_k = "top_k"
top_p = "top_p"
top_k_top_p = "top_k_top_p"
sigmoid = "sigmoid"
@json_schema_type
@dataclass
class SyntheticDataGenerationRequest:
"""Request to generate synthetic data. A small batch of prompts and a filtering function"""
prompts: List[Message]
filtering_function: FilteringFunction = FilteringFunction.none
reward_scoring: Optional[RewardScoring] = None
@json_schema_type
@dataclass
class SyntheticDataGenerationResponse:
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold."""
synthetic_data: List[KScoredPromptGenerations]
statistics: Optional[Dict[str, Any]] = None
class SyntheticDataGeneration(Protocol):
@webmethod(route="/synthetic_data_generation/generate")
def post_generate(
self,
request: SyntheticDataGenerationRequest,
) -> Union[SyntheticDataGenerationResponse]: ...
@json_schema_type
@dataclass
class CreateDatasetRequest:
"""Request to create a dataset."""
uuid: str
dataset: Dataset
class Datasets(Protocol):
@webmethod(route="/datasets/create")
def create_dataset(
self,
request: CreateDatasetRequest,
) -> None: ...
@webmethod(route="/datasets/get")
def get_dataset(
self,
dataset_id: str,
) -> Dataset: ...
@webmethod(route="/datasets/delete")
def delete_dataset(
self,
dataset_id: str,
) -> None: ...
@json_schema_type
@dataclass
class PostTrainingSFTRequest:
"""Request to finetune a model."""
job_uuid: str
model: PretrainedModel
dataset: Dataset
validation_dataset: Dataset
algorithm: FinetuningAlgorithm
algorithm_config: Union[
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
]
optimizer_config: OptimizerConfig
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: Dict[str, Any]
logger_config: Dict[str, Any]
@json_schema_type
@dataclass
class PostTrainingRLHFRequest:
"""Request to finetune a model."""
job_uuid: str
finetuned_model: URL
dataset: Dataset
validation_dataset: Dataset
algorithm: RLHFAlgorithm
algorithm_config: Union[DPOAlignmentConfig]
optimizer_config: OptimizerConfig
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: Dict[str, Any]
logger_config: Dict[str, Any]
@json_schema_type
@dataclass
class PostTrainingJobStatusResponse:
"""Status of a finetuning job."""
job_uuid: str
status: PostTrainingJobStatus
scheduled_at: Optional[datetime] = None
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
resources_allocated: Optional[Dict[str, Any]] = None
checkpoints: List[Checkpoint] = field(default_factory=list)
@json_schema_type
@dataclass
class PostTrainingJobArtifactsResponse:
"""Artifacts of a finetuning job."""
job_uuid: str
checkpoints: List[Checkpoint] = field(default_factory=list)
# TODO(ashwin): metrics, evals
class PostTraining(Protocol):
@webmethod(route="/post_training/supervised_fine_tune/")
def post_supervised_fine_tune(
self,
request: PostTrainingSFTRequest,
) -> None: ...
@webmethod(route="/post_training/preference_optimize/")
def post_preference_optimize(
self,
request: PostTrainingRLHFRequest,
) -> None: ...
# sends SSE stream of logs
@webmethod(route="/post_training/job/logs")
def get_training_log_stream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
@webmethod(route="/post_training/job/status")
def get_training_job_status(
self, job_uuid: str
) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post_training/job/cancel")
def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post_training/job/artifacts")
def get_training_job_artifacts(
self, job_uuid: str
) -> PostTrainingJobArtifactsResponse: ...
class LlamaStackEndpoints(
Inference,
AgenticSystem,
RewardScoring,
SyntheticDataGeneration,
Datasets,
PostTraining,
MemoryBanks,
): ...
if __name__ == "__main__":
print("Converting the spec to YAML (openapi.yaml) and HTML (openapi.html)")
spec = Specification(
LlamaStackEndpoints,
Options(
server=Server(url="http://any-hosted-llama-stack.com"),
info=Info(
title="[DRAFT] Llama Stack Specification",
version="0.0.1",
description="""
Meta has built out a fairly sophisticated platform internally to post train, evaluate, and
serve Llama models to support Metas products. Given the newer capabilities of the llama models,
the model development and model serving capabilities of the platform need to be enhanced in
specific ways in order to best leverage the models. For example, the inference platform needs
to support code execution to take advantage of the built-in knowledge of tools of the model.
The largest models are of high enough quality to be used to generate synthetic data or be used
as reward models. There are specific fine tuning and quantization techniques that we have found
result in the best performing Llama models. We would like to share ways in which an LLM Ops
toolchain can be designed by leveraging our learnings in getting Llama models to power Metas products.
In addition, the Llama 3 models Meta will release in July should not just be seen as a model, but
really as a system starting the transition towards an entity capable of performing "agentic" tasks
which require the ability to act as the central planner and break a task down and perform multi-step
reasoning and call tools for specific operations. In addition, there needs to be general model-level
safety checks as well as task-specific safety checks that are performed at a system level.
We are defining the Llama Stack as a set of APIs and standards by synthesizing our learnings while
working with Llama models. The APIs are divided into the llama-toolchain-api and the llama-agentic-system-api.
These APIs provide a coherent way for model developers to fine tune and serve Llama models, and agentic app
developers to leverage all the capabilities of the Llama models seamlessly. We would like to work with the
ecosystem to enhance and simplify the API. In addition, we will be releasing a plug-in architecture to allow
creating distributions of the llama stack with different implementations.
This is the specification of the llama stack that provides
a set of endpoints and their corresponding interfaces that are tailored to
best leverage Llama Models. The specification is still in draft and subject to change.""",
),
),
)
with open("openapi.yaml", "w", encoding="utf-8") as fp:
yaml.dump(spec.get_json(), fp, allow_unicode=True)
with open("openapi.html", "w") as fp:
spec.write_html(fp, pretty_print=True)