mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* wip * dataset validation * test_scoring * cleanup * clean up test * comments * error checking * dataset client * test client: * datasetio client * clean up * basic scoring function works * scorer wip * equality scorer * score batch impl * score batch * update scoring test * refactor * validate scorer input * address comments * evals with generation * add all rows scores to ScoringResult * minor typing * bugfix * scoring function def rename * rebase name * refactor * address comments * Update iOS inference instructions for new quantization * Small updates to quantization config * Fix score threshold in faiss * Bump version to 0.0.45 * Handle both ipv6 and ipv4 interfaces together * update manifest for build templates * Update getting_started.md * chatcompletion & completion input type validation * inclusion->subsetof * error checking * scoring_function -> scoring_fn rename, scorer -> scoring_fn rename * address comments * [Evals API][5/n] fixes to generate openapi spec (#323) * generate openapi * typing comment, dataset -> dataset_id * remove custom type * sample eval run.yaml --------- Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
146 lines
4.5 KiB
Python
146 lines
4.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import os
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.common.type_system import * # noqa: F403
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
|
import base64
|
|
import mimetypes
|
|
from pathlib import Path
|
|
|
|
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
|
|
|
# How to run this test:
|
|
#
|
|
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
|
# since it depends on the provider you are testing. On top of that you need
|
|
# `pytest` and `pytest-asyncio` installed.
|
|
#
|
|
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
|
#
|
|
# 3. Run:
|
|
#
|
|
# ```bash
|
|
# PROVIDER_ID=<your_provider> \
|
|
# PROVIDER_CONFIG=provider_config.yaml \
|
|
# pytest -s llama_stack/providers/tests/datasetio/test_datasetio.py \
|
|
# --tb=short --disable-warnings
|
|
# ```
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def datasetio_settings():
|
|
impls = await resolve_impls_for_test(
|
|
Api.datasetio,
|
|
)
|
|
return {
|
|
"datasetio_impl": impls[Api.datasetio],
|
|
"datasets_impl": impls[Api.datasets],
|
|
}
|
|
|
|
|
|
def data_url_from_file(file_path: str) -> str:
|
|
if not os.path.exists(file_path):
|
|
raise FileNotFoundError(f"File not found: {file_path}")
|
|
|
|
with open(file_path, "rb") as file:
|
|
file_content = file.read()
|
|
|
|
base64_content = base64.b64encode(file_content).decode("utf-8")
|
|
mime_type, _ = mimetypes.guess_type(file_path)
|
|
|
|
data_url = f"data:{mime_type};base64,{base64_content}"
|
|
|
|
return data_url
|
|
|
|
|
|
async def register_dataset(
|
|
datasets_impl: Datasets, for_generation=False, dataset_id="test_dataset"
|
|
):
|
|
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
|
|
test_url = data_url_from_file(str(test_file))
|
|
|
|
if for_generation:
|
|
dataset_schema = {
|
|
"expected_answer": StringType(),
|
|
"chat_completion_input": ChatCompletionInputType(),
|
|
}
|
|
else:
|
|
dataset_schema = {
|
|
"expected_answer": StringType(),
|
|
"input_query": StringType(),
|
|
"generated_answer": StringType(),
|
|
}
|
|
|
|
dataset = DatasetDefWithProvider(
|
|
identifier=dataset_id,
|
|
provider_id=os.environ["PROVIDER_ID"],
|
|
url=URL(
|
|
uri=test_url,
|
|
),
|
|
dataset_schema=dataset_schema,
|
|
)
|
|
await datasets_impl.register_dataset(dataset)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datasets_list(datasetio_settings):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datasets_register(datasetio_settings):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
await register_dataset(datasets_impl)
|
|
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
|
|
# register same dataset with same id again will fail
|
|
await register_dataset(datasets_impl)
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
assert response[0].identifier == "test_dataset"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_rows_paginated(datasetio_settings):
|
|
datasetio_impl = datasetio_settings["datasetio_impl"]
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
await register_dataset(datasets_impl)
|
|
|
|
response = await datasetio_impl.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=3,
|
|
)
|
|
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 3
|
|
assert response.next_page_token == "3"
|
|
|
|
# iterate over all rows
|
|
response = await datasetio_impl.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=2,
|
|
page_token=response.next_page_token,
|
|
)
|
|
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 2
|
|
assert response.next_page_token == "5"
|