llama-stack-mirror/tests/integration/datasetio/test_datasetio.py
Ashwin Bharambe abfbaf3c1b
refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401)
All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.

I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.

As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.
2025-03-04 14:53:47 -08:00

118 lines
3.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import mimetypes
import os
from pathlib import Path
import pytest
# How to run this test:
#
# pytest llama_stack/providers/tests/datasetio/test_datasetio.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
def data_url_from_file(file_path: str) -> str:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
with open(file_path, "rb") as file:
file_content = file.read()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_path)
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url
def register_dataset(llama_stack_client, for_generation=False, for_rag=False, dataset_id="test_dataset"):
if for_rag:
test_file = Path(os.path.abspath(__file__)).parent / "test_rag_dataset.csv"
else:
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
test_url = data_url_from_file(str(test_file))
if for_generation:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
}
elif for_rag:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"generated_answer": {"type": "string"},
"context": {"type": "string"},
}
else:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"generated_answer": {"type": "string"},
}
llama_stack_client.datasets.register(
dataset_id=dataset_id,
dataset_schema=dataset_schema,
url=dict(uri=test_url),
provider_id="localfs",
)
def test_datasets_list(llama_stack_client):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
response = llama_stack_client.datasets.list()
assert isinstance(response, list)
assert len(response) == 0
def test_register_dataset(llama_stack_client):
register_dataset(llama_stack_client)
response = llama_stack_client.datasets.list()
assert isinstance(response, list)
assert len(response) == 1
assert response[0].identifier == "test_dataset"
with pytest.raises(ValueError):
# unregister a dataset that does not exist
llama_stack_client.datasets.unregister("test_dataset2")
llama_stack_client.datasets.unregister("test_dataset")
response = llama_stack_client.datasets.list()
assert isinstance(response, list)
assert len(response) == 0
with pytest.raises(ValueError):
llama_stack_client.datasets.unregister("test_dataset")
def test_get_rows_paginated(llama_stack_client):
register_dataset(llama_stack_client)
response = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 3
assert response.next_page_token == "3"
# iterate over all rows
response = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=2,
page_token=response.next_page_token,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 2
assert response.next_page_token == "5"