mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
All of the tests from `llama_stack/providers/tests/` are now moved to `tests/integration`. I converted the `tools`, `scoring` and `datasetio` tests to use API. However, `eval` and `post_training` proved to be a bit challenging to leaving those. I think `post_training` should be relatively straightforward also. As part of this, I noticed that `wolfram_alpha` tool wasn't added to some of our commonly used distros so I added it. I am going to remove a lot of code duplication from distros next so while this looks like a one-off right now, it will go away and be there uniformly for all distros.
118 lines
3.7 KiB
Python
118 lines
3.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import mimetypes
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest llama_stack/providers/tests/datasetio/test_datasetio.py
|
|
# -m "meta_reference"
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
def data_url_from_file(file_path: str) -> str:
|
|
if not os.path.exists(file_path):
|
|
raise FileNotFoundError(f"File not found: {file_path}")
|
|
|
|
with open(file_path, "rb") as file:
|
|
file_content = file.read()
|
|
|
|
base64_content = base64.b64encode(file_content).decode("utf-8")
|
|
mime_type, _ = mimetypes.guess_type(file_path)
|
|
|
|
data_url = f"data:{mime_type};base64,{base64_content}"
|
|
|
|
return data_url
|
|
|
|
|
|
def register_dataset(llama_stack_client, for_generation=False, for_rag=False, dataset_id="test_dataset"):
|
|
if for_rag:
|
|
test_file = Path(os.path.abspath(__file__)).parent / "test_rag_dataset.csv"
|
|
else:
|
|
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
|
|
test_url = data_url_from_file(str(test_file))
|
|
|
|
if for_generation:
|
|
dataset_schema = {
|
|
"expected_answer": {"type": "string"},
|
|
"input_query": {"type": "string"},
|
|
"chat_completion_input": {"type": "chat_completion_input"},
|
|
}
|
|
elif for_rag:
|
|
dataset_schema = {
|
|
"expected_answer": {"type": "string"},
|
|
"input_query": {"type": "string"},
|
|
"generated_answer": {"type": "string"},
|
|
"context": {"type": "string"},
|
|
}
|
|
else:
|
|
dataset_schema = {
|
|
"expected_answer": {"type": "string"},
|
|
"input_query": {"type": "string"},
|
|
"generated_answer": {"type": "string"},
|
|
}
|
|
|
|
llama_stack_client.datasets.register(
|
|
dataset_id=dataset_id,
|
|
dataset_schema=dataset_schema,
|
|
url=dict(uri=test_url),
|
|
provider_id="localfs",
|
|
)
|
|
|
|
|
|
def test_datasets_list(llama_stack_client):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
|
|
response = llama_stack_client.datasets.list()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 0
|
|
|
|
|
|
def test_register_dataset(llama_stack_client):
|
|
register_dataset(llama_stack_client)
|
|
response = llama_stack_client.datasets.list()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
assert response[0].identifier == "test_dataset"
|
|
|
|
with pytest.raises(ValueError):
|
|
# unregister a dataset that does not exist
|
|
llama_stack_client.datasets.unregister("test_dataset2")
|
|
|
|
llama_stack_client.datasets.unregister("test_dataset")
|
|
response = llama_stack_client.datasets.list()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 0
|
|
|
|
with pytest.raises(ValueError):
|
|
llama_stack_client.datasets.unregister("test_dataset")
|
|
|
|
|
|
def test_get_rows_paginated(llama_stack_client):
|
|
register_dataset(llama_stack_client)
|
|
response = llama_stack_client.datasetio.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=3,
|
|
)
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 3
|
|
assert response.next_page_token == "3"
|
|
|
|
# iterate over all rows
|
|
response = llama_stack_client.datasetio.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=2,
|
|
page_token=response.next_page_token,
|
|
)
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 2
|
|
assert response.next_page_token == "5"
|