llama-stack-mirror/tests/integration/tool_runtime/test_rag_tool.py
Ashwin Bharambe abfbaf3c1b
refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401)
All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.

I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.

As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.
2025-03-04 14:53:47 -08:00

167 lines
5.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack_client.types import Document
@pytest.fixture(scope="function")
def client_with_empty_registry(client_with_models):
def clear_registry():
vector_dbs = [vector_db.identifier for vector_db in client_with_models.vector_dbs.list()]
for vector_db_id in vector_dbs:
client_with_models.vector_dbs.unregister(vector_db_id=vector_db_id)
clear_registry()
yield client_with_models
# you must clean after the last test if you were running tests against
# a stateful server instance
clear_registry()
@pytest.fixture(scope="session")
def sample_documents():
return [
Document(
document_id="test-doc-1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
Document(
document_id="test-doc-2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
Document(
document_id="test-doc-3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
Document(
document_id="test-doc-4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
def assert_valid_response(response):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
def test_vector_db_insert_inline_and_query(client_with_empty_registry, sample_documents, embedding_model_id):
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=384,
)
client_with_empty_registry.tool_runtime.rag_tool.insert(
documents=sample_documents,
chunk_size_in_tokens=512,
vector_db_id=vector_db_id,
)
# Query with a direct match
query1 = "programming language"
response1 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query1,
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Query with semantic similarity
query2 = "AI and brain-inspired computing"
response2 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query2,
)
assert_valid_response(response2)
assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks)
# Query with limit on number of results (max_chunks=2)
query3 = "computer"
response3 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query3,
params={"max_chunks": 2},
)
assert_valid_response(response3)
assert len(response3.chunks) <= 2
# Query with threshold on similarity score
query4 = "computer"
response4 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query=query4,
params={"score_threshold": 0.01},
)
assert_valid_response(response4)
assert all(score >= 0.01 for score in response4.scores)
def test_vector_db_insert_from_url_and_query(client_with_empty_registry, sample_documents, embedding_model_id):
providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"]
assert len(providers) > 0
vector_db_id = "test_vector_db"
client_with_empty_registry.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model=embedding_model_id,
embedding_dimension=384,
)
# list to check memory bank is successfully registered
available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()]
assert vector_db_id in available_vector_dbs
# URLs of documents to insert
# TODO: Move to test/memory/resources then update the url to
# https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/memory/resources/{url}
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
client_with_empty_registry.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Query for the name of method
response1 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query="What's the name of the fine-tunning method used?",
)
assert_valid_response(response1)
assert any("lora" in chunk.content.lower() for chunk in response1.chunks)
# Query for the name of model
response2 = client_with_empty_registry.vector_io.query(
vector_db_id=vector_db_id,
query="Which Llama model is mentioned?",
)
assert_valid_response(response2)
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)