mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-30 16:53:12 +00:00
This adds the vLLM-specific extra_body parameters of prompt_logprobs and guided_choice to our openai_completion inference endpoint. The plan here would be to expand this to support all common optional parameters of any of the OpenAI providers, allowing each provider to use or ignore these parameters based on whether their server supports them. Signed-off-by: Ben Browning <bbrownin@redhat.com>
329 lines
12 KiB
Python
329 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
|
|
|
|
from llama_stack_client import AsyncLlamaStackClient
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import OpenAIChatCompletion, OpenAICompletion, OpenAIMessageParam
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
|
|
|
from .config import PassthroughImplConfig
|
|
|
|
|
|
class PassthroughInferenceAdapter(Inference):
|
|
def __init__(self, config: PassthroughImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, [])
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
return model
|
|
|
|
def _get_client(self) -> AsyncLlamaStackClient:
|
|
passthrough_url = None
|
|
passthrough_api_key = None
|
|
provider_data = None
|
|
|
|
if self.config.url is not None:
|
|
passthrough_url = self.config.url
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_url:
|
|
raise ValueError(
|
|
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
|
|
)
|
|
passthrough_url = provider_data.passthrough_url
|
|
|
|
if self.config.api_key is not None:
|
|
passthrough_api_key = self.config.api_key.get_secret_value()
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.passthrough_api_key:
|
|
raise ValueError(
|
|
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
|
|
)
|
|
passthrough_api_key = provider_data.passthrough_api_key
|
|
|
|
return AsyncLlamaStackClient(
|
|
base_url=passthrough_url,
|
|
api_key=passthrough_api_key,
|
|
provider_data=provider_data,
|
|
)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"content": content,
|
|
"sampling_params": sampling_params,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
# only pass through the not None params
|
|
return await client.inference.completion(**json_params)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
# TODO: revisit this remove tool_calls from messages logic
|
|
for message in messages:
|
|
if hasattr(message, "tool_calls"):
|
|
message.tool_calls = None
|
|
|
|
request_params = {
|
|
"model_id": model.provider_resource_id,
|
|
"messages": messages,
|
|
"sampling_params": sampling_params,
|
|
"tools": tools,
|
|
"tool_choice": tool_choice,
|
|
"tool_prompt_format": tool_prompt_format,
|
|
"response_format": response_format,
|
|
"stream": stream,
|
|
"logprobs": logprobs,
|
|
}
|
|
|
|
# only pass through the not None params
|
|
request_params = {key: value for key, value in request_params.items() if value is not None}
|
|
|
|
# cast everything to json dict
|
|
json_params = self.cast_value_to_json_dict(request_params)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(json_params)
|
|
else:
|
|
return await self._nonstream_chat_completion(json_params)
|
|
|
|
async def _nonstream_chat_completion(self, json_params: Dict[str, Any]) -> ChatCompletionResponse:
|
|
client = self._get_client()
|
|
response = await client.inference.chat_completion(**json_params)
|
|
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=response.completion_message.content.text,
|
|
stop_reason=response.completion_message.stop_reason,
|
|
tool_calls=response.completion_message.tool_calls,
|
|
),
|
|
logprobs=response.logprobs,
|
|
)
|
|
|
|
async def _stream_chat_completion(self, json_params: Dict[str, Any]) -> AsyncGenerator:
|
|
client = self._get_client()
|
|
stream_response = await client.inference.chat_completion(**json_params)
|
|
|
|
async for chunk in stream_response:
|
|
chunk = chunk.to_dict()
|
|
|
|
# temporary hack to remove the metrics from the response
|
|
chunk["metrics"] = []
|
|
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
client = self._get_client()
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
return await client.inference.embeddings(
|
|
model_id=model.provider_resource_id,
|
|
contents=contents,
|
|
text_truncation=text_truncation,
|
|
output_dimension=output_dimension,
|
|
task_type=task_type,
|
|
)
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: Union[str, List[str], List[int], List[List[int]]],
|
|
best_of: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
frequency_penalty: Optional[float] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
guided_choice: Optional[List[str]] = None,
|
|
prompt_logprobs: Optional[int] = None,
|
|
) -> OpenAICompletion:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
guided_choice=guided_choice,
|
|
prompt_logprobs=prompt_logprobs,
|
|
)
|
|
|
|
return await client.inference.openai_completion(**params)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[OpenAIMessageParam],
|
|
frequency_penalty: Optional[float] = None,
|
|
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
|
functions: Optional[List[Dict[str, Any]]] = None,
|
|
logit_bias: Optional[Dict[str, float]] = None,
|
|
logprobs: Optional[bool] = None,
|
|
max_completion_tokens: Optional[int] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
presence_penalty: Optional[float] = None,
|
|
response_format: Optional[Dict[str, str]] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[Union[str, List[str]]] = None,
|
|
stream: Optional[bool] = None,
|
|
stream_options: Optional[Dict[str, Any]] = None,
|
|
temperature: Optional[float] = None,
|
|
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
|
tools: Optional[List[Dict[str, Any]]] = None,
|
|
top_logprobs: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
user: Optional[str] = None,
|
|
) -> OpenAIChatCompletion:
|
|
client = self._get_client()
|
|
model_obj = await self.model_store.get_model(model)
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
return await client.inference.openai_chat_completion(**params)
|
|
|
|
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
|
json_params = {}
|
|
for key, value in request_params.items():
|
|
json_input = convert_pydantic_to_json_value(value)
|
|
if isinstance(json_input, dict):
|
|
json_input = {k: v for k, v in json_input.items() if v is not None}
|
|
elif isinstance(json_input, list):
|
|
json_input = [x for x in json_input if x is not None]
|
|
new_input = []
|
|
for x in json_input:
|
|
if isinstance(x, dict):
|
|
x = {k: v for k, v in x.items() if v is not None}
|
|
new_input.append(x)
|
|
json_input = new_input
|
|
|
|
json_params[key] = json_input
|
|
|
|
return json_params
|