mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? * Given that our API packages use "import *" in `__init.py__` we don't need to do `from llama_stack.apis.models.models` but simply from llama_stack.apis.models. The decision to use `import *` is debatable and should probably be revisited at one point. * Remove unneeded Ruff F401 rule * Consolidate Ruff F403 rule in the pyprojectfrom llama_stack.apis.models.models Signed-off-by: Sébastien Han <seb@redhat.com>
300 lines
10 KiB
Python
300 lines
10 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from llama_stack.apis.datasets import DatasetPurpose, URIDataSource
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.distribution.datatypes import (
|
|
BenchmarkInput,
|
|
DatasetInput,
|
|
ModelInput,
|
|
Provider,
|
|
ShieldInput,
|
|
ToolGroupInput,
|
|
)
|
|
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
|
SQLiteVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
|
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
|
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
|
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
|
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
|
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
|
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
|
PGVectorVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
|
|
from llama_stack.templates.template import (
|
|
DistributionTemplate,
|
|
RunConfigSettings,
|
|
get_model_registry,
|
|
)
|
|
|
|
|
|
def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderModelEntry]]]:
|
|
# in this template, we allow each API key to be optional
|
|
providers = [
|
|
(
|
|
"openai",
|
|
[
|
|
ProviderModelEntry(
|
|
provider_model_id="openai/gpt-4o",
|
|
model_type=ModelType.llm,
|
|
)
|
|
],
|
|
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
|
|
),
|
|
(
|
|
"anthropic",
|
|
[
|
|
ProviderModelEntry(
|
|
provider_model_id="anthropic/claude-3-5-sonnet-latest",
|
|
model_type=ModelType.llm,
|
|
)
|
|
],
|
|
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
|
|
),
|
|
(
|
|
"gemini",
|
|
[
|
|
ProviderModelEntry(
|
|
provider_model_id="gemini/gemini-1.5-flash",
|
|
model_type=ModelType.llm,
|
|
)
|
|
],
|
|
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
|
|
),
|
|
(
|
|
"groq",
|
|
[],
|
|
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
|
|
),
|
|
(
|
|
"together",
|
|
[],
|
|
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
|
|
),
|
|
]
|
|
inference_providers = []
|
|
available_models = {}
|
|
for provider_id, model_entries, config in providers:
|
|
inference_providers.append(
|
|
Provider(
|
|
provider_id=provider_id,
|
|
provider_type=f"remote::{provider_id}",
|
|
config=config,
|
|
)
|
|
)
|
|
available_models[provider_id] = model_entries
|
|
return inference_providers, available_models
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
inference_providers, available_models = get_inference_providers()
|
|
providers = {
|
|
"inference": [p.provider_type for p in inference_providers],
|
|
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
|
|
"safety": ["inline::llama-guard"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["inline::meta-reference"],
|
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
|
"tool_runtime": [
|
|
"remote::brave-search",
|
|
"remote::tavily-search",
|
|
"inline::rag-runtime",
|
|
"remote::model-context-protocol",
|
|
],
|
|
}
|
|
name = "open-benchmark"
|
|
|
|
vector_io_providers = [
|
|
Provider(
|
|
provider_id="sqlite-vec",
|
|
provider_type="inline::sqlite-vec",
|
|
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_CHROMADB+chromadb}",
|
|
provider_type="remote::chromadb",
|
|
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:}"),
|
|
),
|
|
Provider(
|
|
provider_id="${env.ENABLE_PGVECTOR+pgvector}",
|
|
provider_type="remote::pgvector",
|
|
config=PGVectorVectorIOConfig.sample_run_config(
|
|
db="${env.PGVECTOR_DB:}",
|
|
user="${env.PGVECTOR_USER:}",
|
|
password="${env.PGVECTOR_PASSWORD:}",
|
|
),
|
|
),
|
|
]
|
|
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::websearch",
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
]
|
|
|
|
default_models = get_model_registry(available_models) + [
|
|
ModelInput(
|
|
model_id="meta-llama/Llama-3.3-70B-Instruct",
|
|
provider_id="groq",
|
|
provider_model_id="groq/llama-3.3-70b-versatile",
|
|
model_type=ModelType.llm,
|
|
),
|
|
ModelInput(
|
|
model_id="meta-llama/Llama-3.1-405B-Instruct",
|
|
provider_id="together",
|
|
provider_model_id="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
|
model_type=ModelType.llm,
|
|
),
|
|
]
|
|
|
|
default_datasets = [
|
|
DatasetInput(
|
|
dataset_id="simpleqa",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/simpleqa?split=train",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="mmlu_cot",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/mmlu_cot?split=test&name=all",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="gpqa_cot",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="math_500",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/math_500?split=test",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="bfcl",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/bfcl_v3?split=train",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="ifeval",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/IfEval?split=train",
|
|
),
|
|
),
|
|
DatasetInput(
|
|
dataset_id="docvqa",
|
|
purpose=DatasetPurpose.eval_messages_answer,
|
|
source=URIDataSource(
|
|
uri="huggingface://datasets/llamastack/docvqa?split=val",
|
|
),
|
|
),
|
|
]
|
|
|
|
default_benchmarks = [
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-simpleqa",
|
|
dataset_id="simpleqa",
|
|
scoring_functions=["llm-as-judge::405b-simpleqa"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-mmlu-cot",
|
|
dataset_id="mmlu_cot",
|
|
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-gpqa-cot",
|
|
dataset_id="gpqa_cot",
|
|
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-math-500",
|
|
dataset_id="math_500",
|
|
scoring_functions=["basic::regex_parser_math_response"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-bfcl",
|
|
dataset_id="bfcl",
|
|
scoring_functions=["basic::bfcl"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-ifeval",
|
|
dataset_id="ifeval",
|
|
scoring_functions=["basic::ifeval"],
|
|
),
|
|
BenchmarkInput(
|
|
benchmark_id="meta-reference-docvqa",
|
|
dataset_id="docvqa",
|
|
scoring_functions=["basic::docvqa"],
|
|
),
|
|
]
|
|
return DistributionTemplate(
|
|
name=name,
|
|
distro_type="self_hosted",
|
|
description="Distribution for running open benchmarks",
|
|
container_image=None,
|
|
template_path=None,
|
|
providers=providers,
|
|
available_models_by_provider=available_models,
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": inference_providers,
|
|
"vector_io": vector_io_providers,
|
|
},
|
|
default_models=default_models,
|
|
default_tool_groups=default_tool_groups,
|
|
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
|
default_datasets=default_datasets,
|
|
default_benchmarks=default_benchmarks,
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"LLAMA_STACK_PORT": (
|
|
"8321",
|
|
"Port for the Llama Stack distribution server",
|
|
),
|
|
"TOGETHER_API_KEY": (
|
|
"",
|
|
"Together API Key",
|
|
),
|
|
"OPENAI_API_KEY": (
|
|
"",
|
|
"OpenAI API Key",
|
|
),
|
|
"GEMINI_API_KEY": (
|
|
"",
|
|
"Gemini API Key",
|
|
),
|
|
"ANTHROPIC_API_KEY": (
|
|
"",
|
|
"Anthropic API Key",
|
|
),
|
|
"GROQ_API_KEY": (
|
|
"",
|
|
"Groq API Key",
|
|
),
|
|
},
|
|
)
|