llama-stack-mirror/llama_stack/templates/sambanova/sambanova.py
Sébastien Han ac5fd57387
chore: remove nested imports (#2515)
# What does this PR do?

* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.

* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-26 08:01:05 +05:30

147 lines
5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
from llama_stack.providers.remote.inference.sambanova.models import MODEL_ENTRIES
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.config import (
PGVectorVectorIOConfig,
)
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
get_model_registry,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::sambanova", "inline::sentence-transformers"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["remote::sambanova"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
"remote::wolfram-alpha",
],
}
name = "sambanova"
inference_provider = Provider(
provider_id=name,
provider_type=f"remote::{name}",
config=SambaNovaImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
vector_io_providers = [
Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
),
),
Provider(
provider_id="${env.ENABLE_CHROMADB+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:}"),
),
Provider(
provider_id="${env.ENABLE_PGVECTOR+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
db="${env.PGVECTOR_DB:}",
user="${env.PGVECTOR_USER:}",
password="${env.PGVECTOR_PASSWORD:}",
),
),
]
available_models = {
name: MODEL_ENTRIES,
}
default_models = get_model_registry(available_models)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::wolfram_alpha",
provider_id="wolfram-alpha",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use SambaNova for running LLM inference and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_shields=[
ShieldInput(
shield_id="meta-llama/Llama-Guard-3-8B", provider_shield_id="sambanova/Meta-Llama-Guard-3-8B"
),
ShieldInput(
shield_id="sambanova/Meta-Llama-Guard-3-8B",
provider_shield_id="sambanova/Meta-Llama-Guard-3-8B",
),
],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"SAMBANOVA_API_KEY": (
"",
"SambaNova API Key",
),
},
)