llama-stack-mirror/llama_stack/providers/impls/meta_reference/evals/evals.py
2024-10-10 21:33:13 -07:00

80 lines
2.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from llama_stack.apis.dataset import * # noqa: F403
from termcolor import cprint
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
from .config import MetaReferenceEvalsImplConfig
class MetaReferenceEvalsImpl(Evals):
def __init__(self, config: MetaReferenceEvalsImplConfig, inference_api: Inference):
self.inference_api = inference_api
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
) -> EvaluateResponse:
cprint(
f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
"red",
)
if not dataset:
raise ValueError("dataset must be specified for mete-reference evals")
dataset = DatasetRegistry.get_dataset(dataset)
dataset.load()
task_impl = TaskRegistry.get_task(task)()
preprocessed = task_impl.preprocess(dataset)
# TODO: replace w/ batch inference & async return eval job
generation_outputs = []
if eval_task_config is None:
eval_task_config = EvaluateTaskConfig(n_samples=len(preprocessed))
if eval_task_config.n_samples is None or eval_task_config.n_samples > len(
preprocessed
):
eval_task_config.n_samples = len(preprocessed)
print(
f"Eval generation start, generate on {eval_task_config.n_samples} samples"
)
for sample in preprocessed[: eval_task_config.n_samples]:
print("generation: ", sample)
response = await self.inference_api.chat_completion(
model=model,
messages=sample.preprocessed["messages"],
stream=False,
)
sample.prediction = PredictionSample(
completion_message=response.completion_message.content
)
generation_outputs.append(sample)
postprocessed = task_impl.postprocess(generation_outputs)
eval_results = task_impl.score(postprocessed)
aggr_result = task_impl.aggregate_results(eval_results)
return EvaluateResponse(
eval_result=aggr_result,
)