llama-stack-mirror/llama_stack/providers/impls/meta_reference/evals/evals.py
2024-10-09 13:18:15 -07:00

59 lines
1.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from termcolor import cprint
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
from .config import MetaReferenceEvalsImplConfig
class MetaReferenceEvalsImpl(Evals):
def __init__(self, config: MetaReferenceEvalsImplConfig, inference_api: Inference):
self.inference_api = inference_api
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
model: str,
task: str,
dataset: Optional[str] = None,
) -> EvaluateResponse:
cprint(f"model={model}, dataset={dataset}, task={task}", "red")
if not dataset:
raise ValueError("dataset must be specified for mete-reference evals")
dataset = DatasetRegistry.get_dataset(dataset)
dataset.load()
task_impl = TaskRegistry.get_task(task)(dataset)
x1 = task_impl.preprocess()
# TODO: replace w/ batch inference & async return eval job
generation_outputs = []
print("generation start")
for msg in x1[:5]:
print("generation for msg: ", msg)
response = await self.inference_api.chat_completion(
model=model,
messages=[msg],
stream=False,
)
generation_outputs.append(response.completion_message.content)
x2 = task_impl.postprocess(generation_outputs)
eval_results = task_impl.score(x2)
eval_response = task_impl.aggregate_results(eval_results)
return eval_response