llama-stack-mirror/fine_tuning.yaml
Hardik Shah 76a9f67189
Update fine_tuning.yaml
update fine tuning version
2024-06-26 20:38:24 -07:00

266 lines
7.3 KiB
YAML

openapi: 3.0.0
info:
title: Fine Tuning API
version: 0.0.1
description: API for managing fine tuning jobs for machine learning models.
paths:
/fine_tuning/jobs/submit:
post:
summary: Submit a fine tuning job
description: Submit a fine tuning job with the specified configuration.
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/Config'
responses:
200:
description: Successfully submitted the fine tuning job.
content:
application/json:
schema:
$ref: '#/components/schemas/FineTuningJob'
/fine_tuning/jobs/status:
get:
summary: Gets last N fine tuning jobs
description: Retrieve the status of the last N fine tuning jobs based on the provided job ID.
parameters:
- in: query
name: job_id
schema:
type: string
required: true
description: The ID of the job to retrieve status for.
responses:
200:
description: Successfully retrieved the job status.
content:
application/json:
schema:
$ref: '#/components/schemas/FineTuningJob'
/fine_tuning/jobs/cancel:
post:
summary: Cancel provided job
description: Cancel the fine tuning job with the specified job ID.
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
job_id:
type: string
responses:
200:
description: Successfully cancelled the fine tuning job.
content:
application/json:
schema:
$ref: '#/components/schemas/FineTuningJob'
/fine_tuning/jobs/tail:
get:
summary: Tail logs of a particular job
description: Stream the logs of a particular job in real-time. This endpoint supports streaming responses.
parameters:
- in: query
name: job_id
schema:
type: string
required: true
description: The ID of the job to tail logs for.
responses:
200:
description: Streaming logs in real-time.
content:
application/x-ndjson:
schema:
type: object
properties:
logs:
type: array
items:
$ref: '#/components/schemas/Log'
headers:
Content-Type:
schema:
type: string
default: 'application/x-ndjson'
Transfer-Encoding:
schema:
type: string
default: 'chunked'
components:
schemas:
Message:
# keep in sync with /chat_completion
TrainingDataItem:
type: object
properties:
dialog:
type: array
items:
$ref: '#/components/schemas/Message'
keep_loss:
type: array
items:
type: boolean
WandBLogger:
type: object
properties:
project:
type: string
description: The project name in WandB where logs will be stored.
DiskLogger:
type: object
properties:
filename:
type: string
description: The filename where logs will be stored on disk.
FullFineTuneOptions:
type: object
properties:
enable_activation_checkpointing:
type: boolean
default: true
memory_efficient_fsdp_wrap:
type: boolean
default: true
fsdp_cpu_offload:
type: boolean
default: true
LoraFineTuneOptions:
type: object
properties:
lora_attn_modules:
type: array
items:
type: string
apply_lora_to_mlp:
type: boolean
default: false
apply_lora_to_output:
type: boolean
default: false
lora_rank:
type: integer
lora_alpha:
type: integer
FineTuningOptions:
type: object
properties:
n_epochs:
type: integer
batch_size:
type: integer
lr:
type: number
format: float
gradient_accumulation_steps:
type: integer
seed:
type: integer
shuffle:
type: boolean
custom_training_options:
oneOf:
- $ref: '#/components/schemas/FullFineTuneOptions'
- $ref: '#/components/schemas/LoraFineTuneOptions'
discriminator:
propertyName: finetuning_type
extras:
# json to put other config overrides that are required by torchtune
type: object
additionalProperties: true
Config:
type: object
properties:
model:
type: string
description: The model identifier that you want to fine tune.
data:
type: string
format: uri
description: Path to the JSONL file with each row representing a TrainingDataItem.
validation_data:
type: string
format: uri
description: Path to the JSONL file used for validation metrics.
fine_tuning_options:
$ref: '#/components/schemas/FineTuningOptions'
logger:
oneOf:
- $ref: '#/components/schemas/DiskLogger'
- $ref: '#/components/schemas/WandBLogger'
discriminator:
propertyName: log_type
overrides:
# eg. --nproc_per_node 4 instead of default that we need to pass through to torchrun
# when running locally
type: string
description: Custom override options for the fine tuning process.
metadata:
type: object
additionalProperties: true
FineTuningJob:
type: object
properties:
job_id:
type: string
description: Unique identifier for the fine tuning job.
created:
type: string
format: date-time
description: The creation date and time of the job.
finished_at:
type: string
format: date-time
description: The completion date and time of the job.
status:
type: string
enum: [validation, queued, running, failed, success, cancelled]
description: The current status of the job.
error_path:
type: string
format: uri
description: Path to the error log file.
checkpoints:
type: array
items:
type: string
format: uri
description: List of paths to checkpoint files for various epochs.
logs:
type: string
format: uri
description: Path to the logs, either local or a WandB URI.
input_config:
$ref: '#/components/schemas/Config'
metadata:
type: object
additionalProperties: true
Log:
type: object
properties:
message:
type: string
description: The log message.
timestamp:
type: string
format: date-time
description: The timestamp of the log message.