mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
Implements a complete S3-based file storage provider for Llama Stack with: Core Implementation: - S3FilesImpl class with full OpenAI Files API compatibility - Support for file upload, download, listing, deletion operations - Sqlite-based metadata storage for fast queries and API compliance - Configurable S3 endpoints (AWS, MinIO, LocalStack support) Key Features: - Automatic S3 bucket creation and management - Metadata persistence - Proper error handling for S3 connectivity and permissions Dependencies: - Adds boto3 for AWS S3 integration - Adds moto[s3] for testing infrastructure Testing: Unit: `./scripts/unit-tests.sh tests/unit/files tests/unit/providers/files` Integration: Start MinIO: `podman run --rm -it -p 9000:9000 minio/minio server /data` Start stack w/ S3 provider: `S3_ENDPOINT_URL=http://localhost:9000 AWS_ACCESS_KEY_ID=minioadmin AWS_SECRET_ACCESS_KEY=minioadmin S3_BUCKET_NAME=llama-stack-files uv run llama stack build --image-type venv --providers files=remote::s3 --run` Run integration tests: `./scripts/integration-tests.sh --stack-config http://localhost:8321 --provider ollama --test-subdirs files` |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
getting_started_llama4.ipynb | ||
getting_started_llama_api.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
original_rfc.md | ||
quick_start.ipynb | ||
README.md |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Render locally
From the llama-stack root directory, run the following command to render the docs locally:
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
You can open up the docs in your browser at http://localhost:8000
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack