llama-stack-mirror/llama_stack/distribution/ui
2025-01-16 15:26:48 -08:00
..
modules Update default port from 5000 -> 8321 2025-01-16 15:26:48 -08:00
page Convert SamplingParams.strategy to a union (#767) 2025-01-15 05:38:51 -08:00
__init__.py move playground ui to llama-stack repo (#536) 2024-11-26 22:04:21 -08:00
app.py [llama stack ui] add native eval & inspect distro & playground pages (#541) 2024-12-04 09:47:09 -08:00
README.md Add eval/scoring/datasetio API providers to distribution templates & UI developer guide (#564) 2024-12-05 16:29:32 -08:00
requirements.txt [llama stack ui] add native eval & inspect distro & playground pages (#541) 2024-12-04 09:47:09 -08:00

(Experimental) LLama Stack UI

Docker Setup

⚠️ This is a work in progress.

Developer Setup

  1. Start up Llama Stack API server. More details here.
llama stack build --template together --image-type conda

llama stack run together
  1. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
$ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
$ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
  1. Start Streamlit UI
cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py