mirror of
				https://github.com/meta-llama/llama-stack.git
				synced 2025-10-25 17:11:12 +00:00 
			
		
		
		
	# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
		
			
				
	
	
		
			304 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			304 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Meta Platforms, Inc. and affiliates.
 | |
| # All rights reserved.
 | |
| #
 | |
| # This source code is licensed under the terms described in the LICENSE file in
 | |
| # the root directory of this source tree.
 | |
| 
 | |
| import math
 | |
| 
 | |
| import fairscale.nn.model_parallel.initialize as fs_init
 | |
| import torch
 | |
| import torch.nn.functional as F
 | |
| from fairscale.nn.model_parallel.layers import (
 | |
|     ColumnParallelLinear,
 | |
|     RowParallelLinear,
 | |
|     VocabParallelEmbedding,
 | |
| )
 | |
| from torch import nn
 | |
| 
 | |
| from .args import ModelArgs
 | |
| 
 | |
| # **NOTE**: This code is not runnable without installing `torch` and `fairscale`
 | |
| # dependencies. These dependencies are not part of the default dependencies
 | |
| # (requirements.txt) of the `llama-models` package.
 | |
| 
 | |
| 
 | |
| class RMSNorm(torch.nn.Module):
 | |
|     def __init__(self, dim: int, eps: float = 1e-6):
 | |
|         super().__init__()
 | |
|         self.eps = eps
 | |
|         self.weight = nn.Parameter(torch.ones(dim))
 | |
| 
 | |
|     def _norm(self, x):
 | |
|         return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         output = self._norm(x.float()).type_as(x)
 | |
|         return output * self.weight
 | |
| 
 | |
| 
 | |
| def apply_scaling(freqs: torch.Tensor) -> torch.Tensor:
 | |
|     # Values obtained from grid search
 | |
|     scale_factor = 8
 | |
|     low_freq_factor = 1
 | |
|     high_freq_factor = 4
 | |
|     old_context_len = 8192  # original llama3 length
 | |
| 
 | |
|     low_freq_wavelen = old_context_len / low_freq_factor
 | |
|     high_freq_wavelen = old_context_len / high_freq_factor
 | |
| 
 | |
|     wavelen = 2 * torch.pi / freqs
 | |
|     new_freqs = torch.where(wavelen > low_freq_wavelen, freqs / scale_factor, freqs)
 | |
|     smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
 | |
|     return torch.where(
 | |
|         (wavelen >= high_freq_wavelen) & (wavelen <= low_freq_wavelen),
 | |
|         (1 - smooth) * new_freqs / scale_factor + smooth * new_freqs,
 | |
|         new_freqs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False):
 | |
|     freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
 | |
|     t = torch.arange(end, device=freqs.device, dtype=torch.float32)
 | |
|     if use_scaled:
 | |
|         freqs = apply_scaling(freqs)
 | |
|     freqs = torch.outer(t, freqs)
 | |
|     freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
 | |
|     return freqs_cis
 | |
| 
 | |
| 
 | |
| def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
 | |
|     ndim = x.ndim
 | |
|     assert 0 <= 1 < ndim
 | |
|     assert freqs_cis.shape == (x.shape[1], x.shape[-1])
 | |
|     shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
 | |
|     return freqs_cis.view(*shape)
 | |
| 
 | |
| 
 | |
| def apply_rotary_emb(
 | |
|     xq: torch.Tensor,
 | |
|     xk: torch.Tensor,
 | |
|     freqs_cis: torch.Tensor,
 | |
| ) -> tuple[torch.Tensor, torch.Tensor]:
 | |
|     xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
 | |
|     xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
 | |
|     freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
 | |
|     xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
 | |
|     xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
 | |
|     return xq_out.type_as(xq), xk_out.type_as(xk)
 | |
| 
 | |
| 
 | |
| def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
 | |
|     """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
 | |
|     bs, slen, n_kv_heads, head_dim = x.shape
 | |
|     if n_rep == 1:
 | |
|         return x
 | |
|     return (
 | |
|         x[:, :, :, None, :]
 | |
|         .expand(bs, slen, n_kv_heads, n_rep, head_dim)
 | |
|         .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
 | |
|     )
 | |
| 
 | |
| 
 | |
| class Attention(nn.Module):
 | |
|     def __init__(self, args: ModelArgs):
 | |
|         super().__init__()
 | |
|         self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
 | |
|         world_size = fs_init.get_model_parallel_world_size()
 | |
|         self.n_local_heads = args.n_heads // world_size
 | |
|         self.n_local_kv_heads = self.n_kv_heads // world_size
 | |
|         self.n_rep = self.n_local_heads // self.n_local_kv_heads
 | |
|         self.head_dim = args.dim // args.n_heads
 | |
| 
 | |
|         self.wq = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             args.n_heads * self.head_dim,
 | |
|             bias=False,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wk = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             self.n_kv_heads * self.head_dim,
 | |
|             bias=False,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wv = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             self.n_kv_heads * self.head_dim,
 | |
|             bias=False,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wo = RowParallelLinear(
 | |
|             args.n_heads * self.head_dim,
 | |
|             args.dim,
 | |
|             bias=False,
 | |
|             input_is_parallel=True,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
| 
 | |
|         self.cache_k = torch.zeros(
 | |
|             (
 | |
|                 args.max_batch_size,
 | |
|                 args.max_seq_len,
 | |
|                 self.n_local_kv_heads,
 | |
|                 self.head_dim,
 | |
|             )
 | |
|         )
 | |
|         self.cache_v = torch.zeros(
 | |
|             (
 | |
|                 args.max_batch_size,
 | |
|                 args.max_seq_len,
 | |
|                 self.n_local_kv_heads,
 | |
|                 self.head_dim,
 | |
|             )
 | |
|         )
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         x: torch.Tensor,
 | |
|         start_pos: int,
 | |
|         freqs_cis: torch.Tensor,
 | |
|         mask: torch.Tensor | None,
 | |
|     ):
 | |
|         bsz, seqlen, _ = x.shape
 | |
|         xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
 | |
| 
 | |
|         xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
 | |
|         xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
 | |
|         xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
 | |
| 
 | |
|         xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
 | |
| 
 | |
|         self.cache_k = self.cache_k.to(xq)
 | |
|         self.cache_v = self.cache_v.to(xq)
 | |
| 
 | |
|         self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
 | |
|         self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
 | |
| 
 | |
|         keys = self.cache_k[:bsz, : start_pos + seqlen]
 | |
|         values = self.cache_v[:bsz, : start_pos + seqlen]
 | |
| 
 | |
|         # repeat k/v heads if n_kv_heads < n_heads
 | |
|         keys = repeat_kv(keys, self.n_rep)  # (bs, cache_len + seqlen, n_local_heads, head_dim)
 | |
|         values = repeat_kv(values, self.n_rep)  # (bs, cache_len + seqlen, n_local_heads, head_dim)
 | |
| 
 | |
|         xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
 | |
|         keys = keys.transpose(1, 2)  # (bs, n_local_heads, cache_len + seqlen, head_dim)
 | |
|         values = values.transpose(1, 2)  # (bs, n_local_heads, cache_len + seqlen, head_dim)
 | |
|         scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
 | |
|         if mask is not None:
 | |
|             scores = scores + mask  # (bs, n_local_heads, seqlen, cache_len + seqlen)
 | |
|         scores = F.softmax(scores.float(), dim=-1).type_as(xq)
 | |
|         output = torch.matmul(scores, values)  # (bs, n_local_heads, seqlen, head_dim)
 | |
|         output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
 | |
|         return self.wo(output)
 | |
| 
 | |
| 
 | |
| class FeedForward(nn.Module):
 | |
|     def __init__(
 | |
|         self,
 | |
|         dim: int,
 | |
|         hidden_dim: int,
 | |
|         multiple_of: int,
 | |
|         ffn_dim_multiplier: float | None,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         hidden_dim = int(2 * hidden_dim / 3)
 | |
|         # custom dim factor multiplier
 | |
|         if ffn_dim_multiplier is not None:
 | |
|             hidden_dim = int(ffn_dim_multiplier * hidden_dim)
 | |
|         hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | |
| 
 | |
|         self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
 | |
|         self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
 | |
|         self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.w2(F.silu(self.w1(x)) * self.w3(x))
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, layer_id: int, args: ModelArgs):
 | |
|         super().__init__()
 | |
|         self.n_heads = args.n_heads
 | |
|         self.dim = args.dim
 | |
|         self.head_dim = args.dim // args.n_heads
 | |
|         self.attention = Attention(args)
 | |
|         self.feed_forward = FeedForward(
 | |
|             dim=args.dim,
 | |
|             hidden_dim=4 * args.dim,
 | |
|             multiple_of=args.multiple_of,
 | |
|             ffn_dim_multiplier=args.ffn_dim_multiplier,
 | |
|         )
 | |
|         self.layer_id = layer_id
 | |
|         self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
 | |
|         self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         x: torch.Tensor,
 | |
|         start_pos: int,
 | |
|         freqs_cis: torch.Tensor,
 | |
|         mask: torch.Tensor | None,
 | |
|     ):
 | |
|         h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
 | |
|         out = h + self.feed_forward(self.ffn_norm(h))
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Transformer(nn.Module):
 | |
|     def __init__(self, params: ModelArgs):
 | |
|         super().__init__()
 | |
|         self.params = params
 | |
|         self.vocab_size = params.vocab_size
 | |
|         self.n_layers = params.n_layers
 | |
| 
 | |
|         self.tok_embeddings = VocabParallelEmbedding(params.vocab_size, params.dim, init_method=lambda x: x)
 | |
| 
 | |
|         self.layers = torch.nn.ModuleList()
 | |
|         for layer_id in range(params.n_layers):
 | |
|             self.layers.append(TransformerBlock(layer_id, params))
 | |
| 
 | |
|         self.norm = RMSNorm(params.dim, eps=params.norm_eps)
 | |
|         self.output = ColumnParallelLinear(params.dim, params.vocab_size, bias=False, init_method=lambda x: x)
 | |
| 
 | |
|         self.freqs_cis = precompute_freqs_cis(
 | |
|             params.dim // params.n_heads,
 | |
|             params.max_seq_len * 2,
 | |
|             params.rope_theta,
 | |
|             params.use_scaled_rope,
 | |
|         )
 | |
| 
 | |
|     @torch.inference_mode()
 | |
|     def forward(self, tokens: torch.Tensor, start_pos: int):
 | |
|         _bsz, seqlen = tokens.shape
 | |
|         h = self.tok_embeddings(tokens)
 | |
|         self.freqs_cis = self.freqs_cis.to(h.device)
 | |
|         freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
 | |
| 
 | |
|         mask = None
 | |
|         if seqlen > 1:
 | |
|             mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
 | |
| 
 | |
|             mask = torch.triu(mask, diagonal=1)
 | |
| 
 | |
|             # https://github.com/pytorch/pytorch/issues/100005
 | |
|             # torch.triu is buggy when the device is mps: filled values are
 | |
|             # nan instead of 0.
 | |
|             if mask.device.type == torch.device("mps").type:
 | |
|                 mask = torch.nan_to_num(mask, nan=0.0)
 | |
| 
 | |
|             # When performing key-value caching, we compute the attention scores
 | |
|             # only for the new sequence. Thus, the matrix of scores is of size
 | |
|             # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
 | |
|             # j > cache_len + i, since row i corresponds to token cache_len + i.
 | |
|             mask = torch.hstack([torch.zeros((seqlen, start_pos), device=tokens.device), mask]).type_as(h)
 | |
| 
 | |
|         for layer in self.layers:
 | |
|             h = layer(h, start_pos, freqs_cis, mask)
 | |
|         h = self.norm(h)
 | |
|         output = self.output(h).float()
 | |
|         return output
 |