llama-stack-mirror/llama_toolchain/common
Ashwin Bharambe b6a3ef51da Introduce a "Router" layer for providers
Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:

- The inference API should be a routing layer over inference providers,
  routed using the "model" key
- The memory banks API is another instance where various memory bank
  types will be provided by independent providers (e.g., a vector store
  is served by Chroma while a keyvalue memory can be served by Redis or
  PGVector)

This commit introduces a generalized routing layer for this purpose.
2024-09-16 17:04:45 -07:00
..
__init__.py Initial commit 2024-07-23 08:32:33 -07:00
config_dirs.py API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51) 2024-09-03 22:39:39 -07:00
deployment_types.py Enable Bing search (#59) 2024-09-10 12:34:29 -07:00
exec.py Introduce Llama stack distributions (#22) 2024-08-08 13:38:41 -07:00
model_utils.py Add a --manifest-file option to llama download 2024-08-17 10:08:42 -07:00
prompt_for_config.py Introduce a "Router" layer for providers 2024-09-16 17:04:45 -07:00
serialize.py API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51) 2024-09-03 22:39:39 -07:00
training_types.py llama_models.llama3_1 -> llama_models.llama3 2024-08-19 10:55:37 -07:00