llama-stack-mirror/llama_stack/providers/remote/inference/groq/groq.py

141 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import AsyncIterator, List, Optional, Union
from groq import Groq
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
InterleavedTextMedia,
Message,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_models.sku_list import CoreModelId
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
LogProbConfig,
ResponseFormat,
)
from llama_stack.providers.remote.inference.groq.config import GroqConfig
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
build_model_alias_with_just_provider_model_id,
ModelRegistryHelper,
)
from .groq_utils import (
convert_chat_completion_request,
convert_chat_completion_response,
convert_chat_completion_response_stream,
)
_MODEL_ALIASES = [
build_model_alias(
"llama3-8b-8192",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias_with_just_provider_model_id(
"llama-3.1-8b-instant",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3-70b-8192",
CoreModelId.llama3_70b_instruct.value,
),
build_model_alias(
"llama-3.3-70b-versatile",
CoreModelId.llama3_3_70b_instruct.value,
),
# Groq only contains a preview version for llama-3.2-3b
# Preview models aren't recommended for production use, but we include this one
# to pass the test fixture
# TODO(aidand): Replace this with a stable model once Groq supports it
build_model_alias(
"llama-3.2-3b-preview",
CoreModelId.llama3_2_3b_instruct.value,
),
]
class GroqInferenceAdapter(Inference, ModelRegistryHelper):
_client: Groq
def __init__(self, config: GroqConfig):
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
self._client = Groq(api_key=config.api_key)
def completion(
self,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
# Groq doesn't support non-chat completion as of time of writing
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[
ToolPromptFormat
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
model_id = self.get_provider_model_id(model_id)
if model_id == "llama-3.2-3b-preview":
warnings.warn(
"Groq only contains a preview version for llama-3.2-3b-instruct. "
"Preview models aren't recommended for production use. "
"They can be discontinued on short notice."
)
request = convert_chat_completion_request(
request=ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
)
response = self._client.chat.completions.create(**request)
if stream:
return convert_chat_completion_response_stream(response)
else:
return convert_chat_completion_response(response)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()