mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-22 18:22:26 +00:00
138 lines
4.2 KiB
Python
138 lines
4.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.models import ModelInput, ModelType
|
|
from llama_stack.apis.tools import (
|
|
BuiltInToolDef,
|
|
CustomToolDef,
|
|
ToolGroupInput,
|
|
ToolParameter,
|
|
UserDefinedToolGroupDef,
|
|
)
|
|
from llama_stack.apis.tools.tools import BuiltinTool
|
|
from llama_stack.distribution.datatypes import Api, Provider
|
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
|
|
|
from ..conftest import ProviderFixture
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def tool_runtime_memory_and_search() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="memory-runtime",
|
|
provider_type="inline::memory-runtime",
|
|
config={},
|
|
),
|
|
Provider(
|
|
provider_id="tavily-search",
|
|
provider_type="remote::tavily-search",
|
|
config={
|
|
"api_key": os.environ["TAVILY_SEARCH_API_KEY"],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
|
|
|
|
TOOL_RUNTIME_FIXTURES = ["memory_and_search"]
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def tools_stack(request, inference_model):
|
|
fixture_dict = request.param
|
|
|
|
providers = {}
|
|
provider_data = {}
|
|
for key in ["inference", "memory", "tool_runtime"]:
|
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
|
providers[key] = fixture.providers
|
|
if key == "inference":
|
|
providers[key].append(
|
|
Provider(
|
|
provider_id="tools_memory_provider",
|
|
provider_type="inline::sentence-transformers",
|
|
config={},
|
|
)
|
|
)
|
|
if fixture.provider_data:
|
|
provider_data.update(fixture.provider_data)
|
|
inference_models = (
|
|
inference_model if isinstance(inference_model, list) else [inference_model]
|
|
)
|
|
models = [
|
|
ModelInput(
|
|
model_id=model,
|
|
model_type=ModelType.llm,
|
|
provider_id=providers["inference"][0].provider_id,
|
|
)
|
|
for model in inference_models
|
|
]
|
|
models.append(
|
|
ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
model_type=ModelType.embedding,
|
|
provider_id="tools_memory_provider",
|
|
metadata={"embedding_dimension": 384},
|
|
)
|
|
)
|
|
|
|
tool_groups = [
|
|
ToolGroupInput(
|
|
tool_group_id="tavily_search_group",
|
|
tool_group=UserDefinedToolGroupDef(
|
|
tools=[
|
|
BuiltInToolDef(
|
|
built_in_type=BuiltinTool.brave_search,
|
|
metadata={},
|
|
),
|
|
],
|
|
),
|
|
provider_id="tavily-search",
|
|
),
|
|
ToolGroupInput(
|
|
tool_group_id="memory_group",
|
|
tool_group=UserDefinedToolGroupDef(
|
|
tools=[
|
|
CustomToolDef(
|
|
name="memory",
|
|
description="Query the memory bank",
|
|
parameters=[
|
|
ToolParameter(
|
|
name="input_messages",
|
|
description="The input messages to search for in memory",
|
|
parameter_type="list",
|
|
required=True,
|
|
),
|
|
],
|
|
metadata={
|
|
"config": {
|
|
"memory_bank_configs": [
|
|
{"bank_id": "test_bank", "type": "vector"}
|
|
]
|
|
}
|
|
},
|
|
)
|
|
],
|
|
),
|
|
provider_id="memory-runtime",
|
|
),
|
|
]
|
|
|
|
test_stack = await construct_stack_for_test(
|
|
[Api.tool_groups, Api.inference, Api.memory, Api.tool_runtime],
|
|
providers,
|
|
provider_data,
|
|
models=models,
|
|
tool_groups=tool_groups,
|
|
)
|
|
return test_stack
|