mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
479 lines
18 KiB
Python
479 lines
18 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import logging
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
TextDelta,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
Inference,
|
|
InterleavedContent,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
TokenLogProbs,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
)
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.models.llama.datatypes import (
|
|
ModelFamily,
|
|
SamplingParams,
|
|
StopReason,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
|
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
|
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
|
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
|
from llama_stack.models.llama.sku_list import resolve_model
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.embedding_mixin import (
|
|
SentenceTransformerEmbeddingMixin,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
build_hf_repo_model_entry,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
augment_content_with_response_format_prompt,
|
|
chat_completion_request_to_messages,
|
|
convert_request_to_raw,
|
|
)
|
|
|
|
from .config import MetaReferenceInferenceConfig
|
|
from .generators import Llama3Generator, Llama4Generator
|
|
from .model_parallel import LlamaModelParallelGenerator
|
|
|
|
log = logging.getLogger(__name__)
|
|
# there's a single model parallel process running serving the model. for now,
|
|
# we don't support multiple concurrent requests to this process.
|
|
SEMAPHORE = asyncio.Semaphore(1)
|
|
|
|
|
|
def llama3_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> Llama3Generator:
|
|
return Llama3Generator(config, model_id, llama_model)
|
|
|
|
|
|
def llama4_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> Llama4Generator:
|
|
return Llama4Generator(config, model_id, llama_model)
|
|
|
|
|
|
class MetaReferenceInferenceImpl(
|
|
SentenceTransformerEmbeddingMixin,
|
|
Inference,
|
|
ModelsProtocolPrivate,
|
|
):
|
|
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
|
self.config = config
|
|
self.model_id = None
|
|
self.llama_model = None
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
if self.config.create_distributed_process_group:
|
|
self.generator.stop()
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
llama_model = (
|
|
resolve_model(model.metadata["llama_model"])
|
|
if "llama_model" in model.metadata
|
|
else resolve_model(model.identifier)
|
|
)
|
|
if llama_model is None:
|
|
raise ValueError(
|
|
"Please make sure your llama_model in model metadata or model identifier is in Llama SKU list"
|
|
)
|
|
|
|
self.model_registry_helper = ModelRegistryHelper(
|
|
[
|
|
build_hf_repo_model_entry(
|
|
llama_model.descriptor(),
|
|
llama_model.core_model_id.value,
|
|
)
|
|
],
|
|
)
|
|
model = await self.model_registry_helper.register_model(model)
|
|
|
|
if model.model_type == ModelType.embedding:
|
|
self._load_sentence_transformer_model(model.provider_resource_id)
|
|
|
|
# TODO: what is this?! you can't really specify skipping via model metadata
|
|
# kill this madness
|
|
if "skip_load" in model.metadata and model.metadata["skip_load"]:
|
|
return model
|
|
|
|
await self.load_model(model.identifier, llama_model)
|
|
return model
|
|
|
|
async def load_model(self, model_id, llama_model) -> None:
|
|
log.info(f"Loading model `{model_id}`")
|
|
|
|
if llama_model.model_family in {
|
|
ModelFamily.llama3,
|
|
ModelFamily.llama3_1,
|
|
ModelFamily.llama3_2,
|
|
ModelFamily.llama3_3,
|
|
}:
|
|
builder_fn = llama3_builder_fn
|
|
elif llama_model.model_family == ModelFamily.llama4:
|
|
builder_fn = llama4_builder_fn
|
|
else:
|
|
raise ValueError(f"Unsupported model family: {llama_model.model_family}")
|
|
|
|
builder_params = [self.config, model_id, llama_model]
|
|
|
|
if self.config.create_distributed_process_group:
|
|
self.generator = LlamaModelParallelGenerator(
|
|
model_parallel_size=llama_model.pth_file_count,
|
|
builder_fn=builder_fn,
|
|
builder_params=builder_params,
|
|
formatter=(
|
|
Llama4ChatFormat(Llama4Tokenizer.get_instance())
|
|
if llama_model.model_family == ModelFamily.llama4
|
|
else Llama3ChatFormat(Llama3Tokenizer.get_instance())
|
|
),
|
|
)
|
|
self.generator.start()
|
|
else:
|
|
self.generator = builder_fn(*builder_params)
|
|
|
|
self.model_id = model_id
|
|
self.llama_model = llama_model
|
|
|
|
def check_model(self, request) -> None:
|
|
if self.model_id is None or self.llama_model is None:
|
|
raise RuntimeError(
|
|
"No avaible model yet, please register your requested model or add your model in the resouces first"
|
|
)
|
|
elif request.model != self.model_id:
|
|
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
content = augment_content_with_response_format_prompt(response_format, content)
|
|
request = CompletionRequest(
|
|
model=model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
self.check_model(request)
|
|
request = await convert_request_to_raw(request)
|
|
|
|
if request.stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
|
|
def impl():
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.completion(request):
|
|
if token_result.token == tokenizer.eot_id:
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.token == tokenizer.eom_id:
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
logprobs = None
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
|
|
|
|
yield CompletionResponseStreamChunk(
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if stop_reason is None:
|
|
yield CompletionResponseStreamChunk(
|
|
delta="",
|
|
stop_reason=StopReason.out_of_tokens,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.completion(request):
|
|
tokens.append(token_result.token)
|
|
if token_result.token == tokenizer.eot_id:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif token_result.token == tokenizer.eom_id:
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
if tokens[-1] in self.generator.formatter.tokenizer.stop_tokens:
|
|
tokens = tokens[:-1]
|
|
content = self.generator.formatter.tokenizer.decode(tokens)
|
|
return CompletionResponse(
|
|
content=content,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
if logprobs:
|
|
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
|
|
|
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
|
request = ChatCompletionRequest(
|
|
model=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
self.check_model(request)
|
|
|
|
# augment and rewrite messages depending on the model
|
|
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
|
|
# download media and convert to raw content so we can send it to the model
|
|
request = await convert_request_to_raw(request)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
if SEMAPHORE.locked():
|
|
raise RuntimeError("Only one concurrent request is supported")
|
|
|
|
if request.stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
|
|
def impl():
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if token_result.token == tokenizer.eot_id:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif token_result.token == tokenizer.eom_id:
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
raw_message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=raw_message.content,
|
|
stop_reason=raw_message.stop_reason,
|
|
tool_calls=raw_message.tool_calls,
|
|
),
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
return impl()
|
|
else:
|
|
return impl()
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
tokenizer = self.generator.formatter.tokenizer
|
|
|
|
def impl():
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta=TextDelta(text=""),
|
|
)
|
|
)
|
|
|
|
tokens = []
|
|
logprobs = []
|
|
stop_reason = None
|
|
ipython = False
|
|
|
|
for token_result in self.generator.chat_completion(request):
|
|
tokens.append(token_result.token)
|
|
|
|
if not ipython and token_result.text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
continue
|
|
|
|
if token_result.token == tokenizer.eot_id:
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.token == tokenizer.eom_id:
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
if ipython:
|
|
delta = ToolCallDelta(
|
|
tool_call=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
else:
|
|
delta = TextDelta(text=text)
|
|
|
|
if stop_reason is None:
|
|
if request.logprobs:
|
|
assert len(token_result.logprobs) == 1
|
|
|
|
logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]}))
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
logprobs=logprobs if request.logprobs else None,
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
|
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call="",
|
|
parse_status=ToolCallParseStatus.failed,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call=tool_call,
|
|
parse_status=ToolCallParseStatus.succeeded,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta=TextDelta(text=""),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
if self.config.create_distributed_process_group:
|
|
async with SEMAPHORE:
|
|
for x in impl():
|
|
yield x
|
|
else:
|
|
for x in impl():
|
|
yield x
|