mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
* migrate dataset to resource * remove auto discovery * remove listing of providers's datasets * fix after rebase --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import Optional
|
|
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
|
|
|
|
import datasets as hf_datasets
|
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
|
|
|
from .config import HuggingfaceDatasetIOConfig
|
|
|
|
|
|
def load_hf_dataset(dataset_def: Dataset):
|
|
if dataset_def.metadata.get("path", None):
|
|
return hf_datasets.load_dataset(**dataset_def.metadata)
|
|
|
|
df = get_dataframe_from_url(dataset_def.url)
|
|
|
|
if df is None:
|
|
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
|
|
|
|
dataset = hf_datasets.Dataset.from_pandas(df)
|
|
return dataset
|
|
|
|
|
|
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
|
|
self.config = config
|
|
# local registry for keeping track of datasets within the provider
|
|
self.dataset_infos = {}
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_dataset(
|
|
self,
|
|
dataset_def: Dataset,
|
|
) -> None:
|
|
self.dataset_infos[dataset_def.identifier] = dataset_def
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
dataset_def = self.dataset_infos[dataset_id]
|
|
loaded_dataset = load_hf_dataset(dataset_def)
|
|
|
|
if page_token and not page_token.isnumeric():
|
|
raise ValueError("Invalid page_token")
|
|
|
|
if page_token is None or len(page_token) == 0:
|
|
next_page_token = 0
|
|
else:
|
|
next_page_token = int(page_token)
|
|
|
|
start = next_page_token
|
|
if rows_in_page == -1:
|
|
end = len(loaded_dataset)
|
|
else:
|
|
end = min(start + rows_in_page, len(loaded_dataset))
|
|
|
|
rows = [loaded_dataset[i] for i in range(start, end)]
|
|
|
|
return PaginatedRowsResult(
|
|
rows=rows,
|
|
total_count=len(rows),
|
|
next_page_token=str(end),
|
|
)
|