mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
When using bash style substitution env variable in distribution template, we are processing the string and convert it to the type associated with the provider's config class. This allows us to return the proper type. This is crucial for api key since they are not strings anymore but SecretStr. If the key is unset we will get an empty string which will result in a Pydantic error like: ``` ERROR 2025-09-25 21:40:44,565 __main__:527 core::server: Error creating app: 1 validation error for AnthropicConfig api_key Input should be a valid string For further information visit https://errors.pydantic.dev/2.11/v/string_type ``` Signed-off-by: Sébastien Han <seb@redhat.com> |
||
---|---|---|
.. | ||
__init__.py | ||
config.py | ||
datasetio.py | ||
README.md |
NVIDIA DatasetIO Provider for LlamaStack
This provider enables dataset management using NVIDIA's NeMo Customizer service.
Features
- Register datasets for fine-tuning LLMs
- Unregister datasets
Getting Started
Prerequisites
- LlamaStack with NVIDIA configuration
- Access to Hosted NVIDIA NeMo Microservice
- API key for authentication with the NVIDIA service
Setup
Build the NVIDIA environment:
llama stack build --distro nvidia --image-type venv
Basic Usage using the LlamaStack Python Client
Initialize the client
import os
os.environ["NVIDIA_API_KEY"] = "your-api-key"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
from llama_stack.core.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
Register a dataset
client.datasets.register(
purpose="post-training/messages",
dataset_id="my-training-dataset",
source={"type": "uri", "uri": "hf://datasets/default/sample-dataset"},
metadata={
"format": "json",
"description": "Dataset for LLM fine-tuning",
"provider": "nvidia",
},
)
Get a list of all registered datasets
datasets = client.datasets.list()
for dataset in datasets:
print(f"Dataset ID: {dataset.identifier}")
print(f"Description: {dataset.metadata.get('description', '')}")
print(f"Source: {dataset.source.uri}")
print("---")
Unregister a dataset
client.datasets.unregister(dataset_id="my-training-dataset")