llama-stack-mirror/llama_stack/providers/remote/inference/tgi/config.py
Sébastien Han bc64635835
feat: load config class when doing variable substitution
When using bash style substitution env variable in distribution
template, we are processing the string and convert it to the type
associated with the provider's config class. This allows us to return
the proper type. This is crucial for api key since they are not strings
anymore but SecretStr. If the key is unset we will get an empty string
which will result in a Pydantic error like:

```
ERROR    2025-09-25 21:40:44,565 __main__:527 core::server: Error creating app: 1 validation error for AnthropicConfig
         api_key
           Input should be a valid string
             For further information visit
             https://errors.pydantic.dev/2.11/v/string_type
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-29 09:55:19 +02:00

72 lines
2.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel, Field
from llama_stack.core.secret_types import MySecretStr
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class TGIImplConfig(BaseModel):
url: str = Field(
description="The URL for the TGI serving endpoint",
)
@classmethod
def sample_run_config(
cls,
url: str = "${env.TGI_URL:=}",
**kwargs,
):
return {
"url": url,
}
@json_schema_type
class InferenceEndpointImplConfig(BaseModel):
endpoint_name: str = Field(
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
)
api_token: MySecretStr = Field(
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@classmethod
def sample_run_config(
cls,
endpoint_name: str = "${env.INFERENCE_ENDPOINT_NAME}",
api_token: str = "${env.HF_API_TOKEN}",
**kwargs,
):
return {
"endpoint_name": endpoint_name,
"api_token": api_token,
}
@json_schema_type
class InferenceAPIImplConfig(BaseModel):
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: MySecretStr = Field(
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@classmethod
def sample_run_config(
cls,
repo: str = "${env.INFERENCE_MODEL}",
api_token: str = "${env.HF_API_TOKEN}",
**kwargs,
):
return {
"huggingface_repo": repo,
"api_token": api_token,
}