mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
When using bash style substitution env variable in distribution template, we are processing the string and convert it to the type associated with the provider's config class. This allows us to return the proper type. This is crucial for api key since they are not strings anymore but SecretStr. If the key is unset we will get an empty string which will result in a Pydantic error like: ``` ERROR 2025-09-25 21:40:44,565 __main__:527 core::server: Error creating app: 1 validation error for AnthropicConfig api_key Input should be a valid string For further information visit https://errors.pydantic.dev/2.11/v/string_type ``` Signed-off-by: Sébastien Han <seb@redhat.com>
115 lines
3.4 KiB
Python
115 lines
3.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
from typing import Any
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.core.secret_types import MySecretStr
|
|
|
|
# TODO: add default values for all fields
|
|
|
|
|
|
class NvidiaPostTrainingConfig(BaseModel):
|
|
"""Configuration for NVIDIA Post Training implementation."""
|
|
|
|
api_key: MySecretStr = Field(
|
|
default_factory=lambda: MySecretStr(os.getenv("NVIDIA_API_KEY", "")),
|
|
description="The NVIDIA API key.",
|
|
)
|
|
|
|
dataset_namespace: str | None = Field(
|
|
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
|
|
description="The NVIDIA dataset namespace.",
|
|
)
|
|
|
|
project_id: str | None = Field(
|
|
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-example-model@v1"),
|
|
description="The NVIDIA project ID.",
|
|
)
|
|
|
|
# ToDO: validate this, add default value
|
|
customizer_url: str | None = Field(
|
|
default_factory=lambda: os.getenv("NVIDIA_CUSTOMIZER_URL"),
|
|
description="Base URL for the NeMo Customizer API",
|
|
)
|
|
|
|
timeout: int = Field(
|
|
default=300,
|
|
description="Timeout for the NVIDIA Post Training API",
|
|
)
|
|
|
|
max_retries: int = Field(
|
|
default=3,
|
|
description="Maximum number of retries for the NVIDIA Post Training API",
|
|
)
|
|
|
|
# ToDo: validate this
|
|
output_model_dir: str = Field(
|
|
default_factory=lambda: os.getenv("NVIDIA_OUTPUT_MODEL_DIR", "test-example-model@v1"),
|
|
description="Directory to save the output model",
|
|
)
|
|
|
|
@classmethod
|
|
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
|
return {
|
|
"api_key": "${env.NVIDIA_API_KEY:=}",
|
|
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:=default}",
|
|
"project_id": "${env.NVIDIA_PROJECT_ID:=test-project}",
|
|
"customizer_url": "${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}",
|
|
}
|
|
|
|
|
|
class SFTLoRADefaultConfig(BaseModel):
|
|
"""NVIDIA-specific training configuration with default values."""
|
|
|
|
# ToDo: split into SFT and LoRA configs??
|
|
|
|
# General training parameters
|
|
n_epochs: int = 50
|
|
|
|
# NeMo customizer specific parameters
|
|
log_every_n_steps: int | None = None
|
|
val_check_interval: float = 0.25
|
|
sequence_packing_enabled: bool = False
|
|
weight_decay: float = 0.01
|
|
lr: float = 0.0001
|
|
|
|
# SFT specific parameters
|
|
hidden_dropout: float | None = None
|
|
attention_dropout: float | None = None
|
|
ffn_dropout: float | None = None
|
|
|
|
# LoRA default parameters
|
|
lora_adapter_dim: int = 8
|
|
lora_adapter_dropout: float | None = None
|
|
lora_alpha: int = 16
|
|
|
|
# Data config
|
|
batch_size: int = 8
|
|
|
|
@classmethod
|
|
def sample_config(cls) -> dict[str, Any]:
|
|
"""Return a sample configuration for NVIDIA training."""
|
|
return {
|
|
"n_epochs": 50,
|
|
"log_every_n_steps": 10,
|
|
"val_check_interval": 0.25,
|
|
"sequence_packing_enabled": False,
|
|
"weight_decay": 0.01,
|
|
"hidden_dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"lora_adapter_dim": 8,
|
|
"lora_alpha": 16,
|
|
"data_config": {
|
|
"dataset_id": "default",
|
|
"batch_size": 8,
|
|
},
|
|
"optimizer_config": {
|
|
"lr": 0.0001,
|
|
},
|
|
}
|