mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
# What does this PR do? ## Test Plan ``` cd /docs/source/distributions/k8s-benchmark # start mock server python openai-mock-server.py --port 8000 # start stack server uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml # run benchmark script uv run python3 benchmark.py --duration 30 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct ``` Before: ============================================================ BENCHMARK RESULTS ============================================================ Total time: 30.00s Concurrent users: 50 Total requests: 1267 Successful requests: 1267 Failed requests: 0 Success rate: 100.0% Requests per second: 42.23 After: ============================================================ BENCHMARK RESULTS ============================================================ Total time: 30.00s Concurrent users: 50 Total requests: 1449 Successful requests: 1449 Failed requests: 0 Success rate: 100.0% Requests per second: 48.30 |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
getting_started_llama4.ipynb | ||
getting_started_llama_api.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
original_rfc.md | ||
quick_start.ipynb | ||
README.md |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Render locally
From the llama-stack root directory, run the following command to render the docs locally:
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
You can open up the docs in your browser at http://localhost:8000
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack