mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 09:00:01 +00:00
386 lines
15 KiB
Python
386 lines
15 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import pytest
|
|
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
|
|
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
|
TrainingConfig,
|
|
TrainingConfigDataConfig,
|
|
TrainingConfigOptimizerConfig,
|
|
)
|
|
|
|
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
|
|
|
POST_TRAINING_PROVIDER_TYPES = ["remote::nvidia"]
|
|
|
|
|
|
@pytest.mark.integration
|
|
@pytest.fixture(scope="session")
|
|
def post_training_provider_available(llama_stack_client):
|
|
providers = llama_stack_client.providers.list()
|
|
post_training_providers = [p for p in providers if p.provider_type in POST_TRAINING_PROVIDER_TYPES]
|
|
return len(post_training_providers) > 0
|
|
|
|
|
|
@pytest.mark.integration
|
|
def test_post_training_provider_registration(llama_stack_client, post_training_provider_available):
|
|
"""Check if post_training is in the api list.
|
|
This is a sanity check to ensure the provider is registered."""
|
|
if not post_training_provider_available:
|
|
pytest.skip("post training provider not available")
|
|
|
|
providers = llama_stack_client.providers.list()
|
|
post_training_providers = [p for p in providers if p.provider_type in POST_TRAINING_PROVIDER_TYPES]
|
|
assert len(post_training_providers) > 0
|
|
|
|
|
|
class TestNvidiaPostTraining(unittest.TestCase):
|
|
def setUp(self):
|
|
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
|
os.environ["NVIDIA_BASE_URL"] = "http://nim.test"
|
|
|
|
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
|
|
|
|
self.llama_stack_client.initialize = MagicMock(return_value=None)
|
|
_ = self.llama_stack_client.initialize()
|
|
|
|
@patch("requests.post")
|
|
def test_supervised_fine_tune(self, mock_post):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.json.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"config": {
|
|
"schema_version": "1.0",
|
|
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.569837",
|
|
"custom_fields": {},
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"model_path": "llama-3_1-8b-instruct",
|
|
"training_types": [],
|
|
"finetuning_types": ["lora"],
|
|
"precision": "bf16",
|
|
"num_gpus": 4,
|
|
"num_nodes": 1,
|
|
"micro_batch_size": 1,
|
|
"tensor_parallel_size": 1,
|
|
"max_seq_length": 4096,
|
|
},
|
|
"dataset": {
|
|
"schema_version": "1.0",
|
|
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.542660",
|
|
"custom_fields": {},
|
|
"name": "default/sample-basic-test",
|
|
"version_id": "main",
|
|
"version_tags": [],
|
|
},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "created",
|
|
"project": "default",
|
|
"custom_fields": {},
|
|
"ownership": {"created_by": "me", "access_policies": {}},
|
|
}
|
|
mock_post.return_value = mock_response
|
|
|
|
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
|
|
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
with patch.object(
|
|
self.llama_stack_client.post_training,
|
|
"supervised_fine_tune",
|
|
return_value={
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "created",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"dataset_id": "sample-basic-test",
|
|
"output_model": "default/job-1234",
|
|
},
|
|
):
|
|
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
|
|
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
self.assertEqual(training_job["status"], "created")
|
|
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
|
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
|
|
|
|
@patch("requests.get")
|
|
def test_get_job_status(self, mock_get):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.json.return_value = {
|
|
"created_at": "2024-12-09T04:06:28.580220",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"status": "completed",
|
|
"steps_completed": 1210,
|
|
"epochs_completed": 2,
|
|
"percentage_done": 100.0,
|
|
"best_epoch": 2,
|
|
"train_loss": 1.718016266822815,
|
|
"val_loss": 1.8661999702453613,
|
|
}
|
|
mock_get.return_value = mock_response
|
|
|
|
with patch.object(
|
|
self.llama_stack_client.post_training.job,
|
|
"status",
|
|
return_value={
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "completed",
|
|
"created_at": "2024-12-09T04:06:28.580220",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"steps_completed": 1210,
|
|
"epochs_completed": 2,
|
|
"percentage_done": 100.0,
|
|
"best_epoch": 2,
|
|
"train_loss": 1.718016266822815,
|
|
"val_loss": 1.8661999702453613,
|
|
},
|
|
):
|
|
status = self.llama_stack_client.post_training.job.status("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
|
|
self.assertEqual(status["status"], "completed")
|
|
self.assertEqual(status["steps_completed"], 1210)
|
|
self.assertEqual(status["epochs_completed"], 2)
|
|
self.assertEqual(status["percentage_done"], 100.0)
|
|
self.assertEqual(status["best_epoch"], 2)
|
|
self.assertEqual(status["train_loss"], 1.718016266822815)
|
|
self.assertEqual(status["val_loss"], 1.8661999702453613)
|
|
|
|
@patch("requests.get")
|
|
def test_get_job(self, mock_get):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.json.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"config": {"name": "meta-llama/Llama-3.1-8B-Instruct", "base_model": "meta-llama/Llama-3.1-8B-Instruct"},
|
|
"dataset": {"name": "default/sample-basic-test"},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "completed",
|
|
"project": "default",
|
|
}
|
|
mock_get.return_value = mock_response
|
|
|
|
client = MagicMock()
|
|
|
|
with patch.object(
|
|
client.post_training,
|
|
"get_job",
|
|
return_value={
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "completed",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"dataset_id": "sample-basic-test",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"adapter_dim": 16,
|
|
"output_model": "default/job-1234",
|
|
},
|
|
):
|
|
job = client.post_training.get_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
|
|
self.assertEqual(job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
self.assertEqual(job["status"], "completed")
|
|
self.assertEqual(job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
|
self.assertEqual(job["dataset_id"], "sample-basic-test")
|
|
self.assertEqual(job["batch_size"], 16)
|
|
self.assertEqual(job["epochs"], 2)
|
|
self.assertEqual(job["learning_rate"], 0.0001)
|
|
self.assertEqual(job["adapter_dim"], 16)
|
|
self.assertEqual(job["output_model"], "default/job-1234")
|
|
|
|
@patch("requests.delete")
|
|
def test_cancel_job(self, mock_delete):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_delete.return_value = mock_response
|
|
|
|
client = MagicMock()
|
|
|
|
with patch.object(client.post_training, "cancel_job", return_value=True):
|
|
result = client.post_training.cancel_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
|
|
self.assertTrue(result)
|
|
|
|
@pytest.mark.asyncio
|
|
@patch("aiohttp.ClientSession.post")
|
|
async def test_async_supervised_fine_tune(self, mock_post):
|
|
mock_response = MagicMock()
|
|
mock_response.status = 200
|
|
mock_response.json = AsyncMock(
|
|
return_value={
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "created",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"dataset_id": "sample-basic-test",
|
|
"output_model": "default/job-1234",
|
|
}
|
|
)
|
|
mock_post.return_value.__aenter__.return_value = mock_response
|
|
|
|
client = MagicMock()
|
|
|
|
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
|
|
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
with patch.object(
|
|
client.post_training,
|
|
"supervised_fine_tune_async",
|
|
AsyncMock(
|
|
return_value={
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"status": "created",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"dataset_id": "sample-basic-test",
|
|
"output_model": "default/job-1234",
|
|
}
|
|
),
|
|
):
|
|
training_job = await client.post_training.supervised_fine_tune_async(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
|
|
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
|
|
self.assertEqual(training_job["status"], "created")
|
|
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
|
|
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
|
|
|
|
@pytest.mark.asyncio
|
|
@patch("aiohttp.ClientSession.post")
|
|
async def test_inference_with_fine_tuned_model(self, mock_post):
|
|
mock_response = MagicMock()
|
|
mock_response.status = 200
|
|
mock_response.json = AsyncMock(
|
|
return_value={
|
|
"id": "cmpl-123456",
|
|
"object": "text_completion",
|
|
"created": 1677858242,
|
|
"model": "job-1234",
|
|
"choices": [
|
|
{
|
|
"text": "The next GTC will take place in the middle of March, 2023.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
|
}
|
|
)
|
|
mock_post.return_value.__aenter__.return_value = mock_response
|
|
|
|
client = MagicMock()
|
|
|
|
with patch.object(
|
|
client.inference,
|
|
"completion",
|
|
AsyncMock(
|
|
return_value={
|
|
"id": "cmpl-123456",
|
|
"object": "text_completion",
|
|
"created": 1677858242,
|
|
"model": "job-1234",
|
|
"choices": [
|
|
{
|
|
"text": "The next GTC will take place in the middle of March, 2023.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
|
|
}
|
|
),
|
|
):
|
|
response = await client.inference.completion(
|
|
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
|
|
stream=False,
|
|
model_id="job-1234",
|
|
sampling_params={
|
|
"max_tokens": 128,
|
|
},
|
|
)
|
|
|
|
self.assertEqual(response["model"], "job-1234")
|
|
self.assertEqual(
|
|
response["choices"][0]["text"], "The next GTC will take place in the middle of March, 2023."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|