# What does this PR do? Updates the help text for the `llama model prompt-format` command to clarify that users should provide a specific model name (e.g., Llama3.1-8B, Llama3.2-11B-Vision), not a model family. Removes the default value and field for `--model-name` to prevent users from mistakenly thinking a model family name is acceptable. Adds guidance to run `llama model list` to view valid model names. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Output of `llama model prompt-format -h` Before: ``` (venv) alina@fedora:~/dev/llama/llama-stack$ llama model prompt-format -h usage: llama model prompt-format [-h] [-m MODEL_NAME] Show llama model message formats options: -h, --help show this help message and exit -m MODEL_NAME, --model-name MODEL_NAME Model Family (llama3_1, llama3_X, etc.) Example: llama model prompt-format <options> (venv) alina@fedora:~/dev/llama/llama-stack$ llama model prompt-format --model-name llama3_1 usage: llama model prompt-format [-h] [-m MODEL_NAME] llama model prompt-format: error: llama3_1 is not a valid Model. Choose one from -- Llama3.1-8B Llama3.1-70B Llama3.1-405B Llama3.1-8B-Instruct Llama3.1-70B-Instruct Llama3.1-405B-Instruct Llama3.2-1B Llama3.2-3B Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.2-11B-Vision Llama3.2-90B-Vision Llama3.2-11B-Vision-Instruct Llama3.2-90B-Vision-Instruct ``` Output of `llama model prompt-format -h` After: ``` (venv) alina@fedora:~/dev/llama/llama-stack$ llama model prompt-format -h usage: llama model prompt-format [-h] [-m MODEL_NAME] Show llama model message formats options: -h, --help show this help message and exit -m MODEL_NAME, --model-name MODEL_NAME Example: Llama3.1-8B or Llama3.2-11B-Vision, etc (Run `llama model list` to see a list of valid model names) Example: llama model prompt-format <options> ``` Signed-off-by: Alina Ryan <aliryan@redhat.com> |
||
---|---|---|
.cursor/rules | ||
.github | ||
distributions | ||
docs | ||
llama_stack | ||
rfcs | ||
scripts | ||
tests | ||
.gitignore | ||
.pre-commit-config.yaml | ||
.readthedocs.yaml | ||
CHANGELOG.md | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry |
---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
SambaNova | Hosted | ✅ | ||||
Cerebras | Hosted | ✅ | ||||
Fireworks | Hosted | ✅ | ✅ | ✅ | ||
AWS Bedrock | Hosted | ✅ | ✅ | |||
Together | Hosted | ✅ | ✅ | ✅ | ||
Groq | Hosted | ✅ | ||||
Ollama | Single Node | ✅ | ||||
TGI | Hosted and Single Node | ✅ | ||||
NVIDIA NIM | Hosted and Single Node | ✅ | ||||
Chroma | Single Node | ✅ | ||||
PG Vector | Single Node | ✅ | ||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | |||
vLLM | Hosted and Single Node | ✅ | ||||
OpenAI | Hosted | ✅ | ||||
Anthropic | Hosted | ✅ | ||||
Gemini | Hosted | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
Meta Reference Quantized | llamastack/distribution-meta-reference-quantized-gpu | Guide |
SambaNova | llamastack/distribution-sambanova | Guide |
Cerebras | llamastack/distribution-cerebras | Guide |
Ollama | llamastack/distribution-ollama | Guide |
TGI | llamastack/distribution-tgi | Guide |
Together | llamastack/distribution-together | Guide |
Fireworks | llamastack/distribution-fireworks | Guide |
vLLM | llamastack/distribution-remote-vllm | Guide |
Installation
You have two ways to install this repository:
-
Install as a package: You can install the repository directly from PyPI by running the following command:
pip install llama-stack
-
Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:
git clone git@github.com:meta-llama/llama-stack.git cd llama-stack uv sync uv pip install -e .
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.