mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? - Removed Optional return types for GET methods - Raised ValueError when requested resource is not found - Ensures proper 4xx response for missing resources - Updated the API generator to check for wrong signatures ``` $ uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh Validating API method return types... API Method Return Type Validation Errors: Method ScoringFunctions.get_scoring_function returns Optional type ``` Closes: https://github.com/meta-llama/llama-stack/issues/1630 ## Test Plan Run the server then: ``` curl http://127.0.0.1:8321/v1/models/foo {"detail":"Invalid value: Model 'foo' not found"}% ``` Server log: ``` INFO: 127.0.0.1:52307 - "GET /v1/models/foo HTTP/1.1" 400 Bad Request 09:51:42.654 [END] /v1/models/foo [StatusCode.OK] (134.65ms) 09:51:42.651 [ERROR] Error executing endpoint route='/v1/models/{model_id:path}' method='get' Traceback (most recent call last): File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 193, in endpoint return await maybe_await(value) File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 156, in maybe_await return await value File "/Users/leseb/Documents/AI/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper result = await method(self, *args, **kwargs) File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 217, in get_model raise ValueError(f"Model '{model_id}' not found") ValueError: Model 'foo' not found ``` Signed-off-by: Sébastien Han <seb@redhat.com>
213 lines
6.6 KiB
Python
213 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.resource import Resource, ResourceType
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
class DatasetPurpose(str, Enum):
|
|
"""
|
|
Purpose of the dataset. Each purpose has a required input data schema.
|
|
|
|
:cvar post-training/messages: The dataset contains messages used for post-training.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
:cvar eval/question-answer: The dataset contains a question column and an answer column.
|
|
{
|
|
"question": "What is the capital of France?",
|
|
"answer": "Paris"
|
|
}
|
|
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, my name is John Doe."},
|
|
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
|
{"role": "user", "content": "What's my name?"},
|
|
],
|
|
"answer": "John Doe"
|
|
}
|
|
"""
|
|
|
|
post_training_messages = "post-training/messages"
|
|
eval_question_answer = "eval/question-answer"
|
|
eval_messages_answer = "eval/messages-answer"
|
|
|
|
# TODO: add more schemas here
|
|
|
|
|
|
class DatasetType(Enum):
|
|
"""
|
|
Type of the dataset source.
|
|
:cvar uri: The dataset can be obtained from a URI.
|
|
:cvar rows: The dataset is stored in rows.
|
|
"""
|
|
|
|
uri = "uri"
|
|
rows = "rows"
|
|
|
|
|
|
@json_schema_type
|
|
class URIDataSource(BaseModel):
|
|
"""A dataset that can be obtained from a URI.
|
|
:param uri: The dataset can be obtained from a URI. E.g.
|
|
- "https://mywebsite.com/mydata.jsonl"
|
|
- "lsfs://mydata.jsonl"
|
|
- "data:csv;base64,{base64_content}"
|
|
"""
|
|
|
|
type: Literal["uri"] = "uri"
|
|
uri: str
|
|
|
|
|
|
@json_schema_type
|
|
class RowsDataSource(BaseModel):
|
|
"""A dataset stored in rows.
|
|
:param rows: The dataset is stored in rows. E.g.
|
|
- [
|
|
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
|
|
]
|
|
"""
|
|
|
|
type: Literal["rows"] = "rows"
|
|
rows: List[Dict[str, Any]]
|
|
|
|
|
|
DataSource = register_schema(
|
|
Annotated[
|
|
Union[URIDataSource, RowsDataSource],
|
|
Field(discriminator="type"),
|
|
],
|
|
name="DataSource",
|
|
)
|
|
|
|
|
|
class CommonDatasetFields(BaseModel):
|
|
"""
|
|
Common fields for a dataset.
|
|
"""
|
|
|
|
purpose: DatasetPurpose
|
|
source: DataSource
|
|
metadata: Dict[str, Any] = Field(
|
|
default_factory=dict,
|
|
description="Any additional metadata for this dataset",
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class Dataset(CommonDatasetFields, Resource):
|
|
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
|
|
|
|
@property
|
|
def dataset_id(self) -> str:
|
|
return self.identifier
|
|
|
|
@property
|
|
def provider_dataset_id(self) -> str:
|
|
return self.provider_resource_id
|
|
|
|
|
|
class DatasetInput(CommonDatasetFields, BaseModel):
|
|
dataset_id: str
|
|
provider_id: Optional[str] = None
|
|
provider_dataset_id: Optional[str] = None
|
|
|
|
|
|
class ListDatasetsResponse(BaseModel):
|
|
data: List[Dataset]
|
|
|
|
|
|
class Datasets(Protocol):
|
|
@webmethod(route="/datasets", method="POST")
|
|
async def register_dataset(
|
|
self,
|
|
purpose: DatasetPurpose,
|
|
source: DataSource,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
dataset_id: Optional[str] = None,
|
|
) -> Dataset:
|
|
"""
|
|
Register a new dataset.
|
|
|
|
:param purpose: The purpose of the dataset. One of
|
|
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
|
|
{
|
|
"question": "What is the capital of France?",
|
|
"answer": "Paris"
|
|
}
|
|
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, my name is John Doe."},
|
|
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
|
{"role": "user", "content": "What's my name?"},
|
|
],
|
|
"answer": "John Doe"
|
|
}
|
|
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
|
|
- {
|
|
"type": "uri",
|
|
"uri": "https://mywebsite.com/mydata.jsonl"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "lsfs://mydata.jsonl"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "data:csv;base64,{base64_content}"
|
|
}
|
|
- {
|
|
"type": "uri",
|
|
"uri": "huggingface://llamastack/simpleqa?split=train"
|
|
}
|
|
- {
|
|
"type": "rows",
|
|
"rows": [
|
|
{
|
|
"messages": [
|
|
{"role": "user", "content": "Hello, world!"},
|
|
{"role": "assistant", "content": "Hello, world!"},
|
|
]
|
|
}
|
|
]
|
|
}
|
|
:param metadata: The metadata for the dataset.
|
|
- E.g. {"description": "My dataset"}
|
|
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
|
|
"""
|
|
...
|
|
|
|
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
|
|
async def get_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> Dataset: ...
|
|
|
|
@webmethod(route="/datasets", method="GET")
|
|
async def list_datasets(self) -> ListDatasetsResponse: ...
|
|
|
|
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
|
|
async def unregister_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> None: ...
|