mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
# What does this PR do? This commit enhances the signal handling mechanism in the server by improving the `handle_signal` (previously handle_sigint) function. It now properly retrieves the signal name, ensuring clearer logging when a termination signal is received. Additionally, it cancels all running tasks and waits for their completion before stopping the event loop, allowing for a more graceful shutdown. Support for handling SIGTERM has also been added alongside SIGINT. Before the changes, handle_sigint used asyncio.run(run_shutdown()). However, asyncio.run() is meant to start a new event loop, and calling it inside an existing one (like when running Uvicorn) raises an error. The fix replaces asyncio.run(run_shutdown()) with an async function scheduled on the existing loop using loop.create_task(shutdown()). This ensures that the shutdown coroutine runs within the current event loop instead of trying to create a new one. Furthermore, this commit updates the project dependencies. `fastapi` and `uvicorn` have been added to the development dependencies in `pyproject.toml` and `uv.lock`, ensuring that the necessary packages are available for development and execution. Closes: https://github.com/meta-llama/llama-stack/issues/1043 Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Run a server and send SIGINT: ``` INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml Using config file: llama_stack/templates/ollama/run.yaml Run configuration: apis: - agents - datasetio - eval - inference - safety - scoring - telemetry - tool_runtime - vector_io container_image: null datasets: [] eval_tasks: [] image_name: ollama metadata_store: db_path: /Users/leseb/.llama/distributions/ollama/registry.db namespace: null type: sqlite models: - metadata: {} model_id: meta-llama/Llama-3.2-3B-Instruct model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType - llm provider_id: ollama provider_model_id: null - metadata: embedding_dimension: 384 model_id: all-MiniLM-L6-v2 model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType - embedding provider_id: sentence-transformers provider_model_id: null providers: agents: - config: persistence_store: db_path: /Users/leseb/.llama/distributions/ollama/agents_store.db namespace: null type: sqlite provider_id: meta-reference provider_type: inline::meta-reference datasetio: - config: {} provider_id: huggingface provider_type: remote::huggingface - config: {} provider_id: localfs provider_type: inline::localfs eval: - config: {} provider_id: meta-reference provider_type: inline::meta-reference inference: - config: url: http://localhost:11434 provider_id: ollama provider_type: remote::ollama - config: {} provider_id: sentence-transformers provider_type: inline::sentence-transformers safety: - config: {} provider_id: llama-guard provider_type: inline::llama-guard scoring: - config: {} provider_id: basic provider_type: inline::basic - config: {} provider_id: llm-as-judge provider_type: inline::llm-as-judge - config: openai_api_key: '********' provider_id: braintrust provider_type: inline::braintrust telemetry: - config: service_name: llama-stack sinks: console,sqlite sqlite_db_path: /Users/leseb/.llama/distributions/ollama/trace_store.db provider_id: meta-reference provider_type: inline::meta-reference tool_runtime: - config: api_key: '********' max_results: 3 provider_id: brave-search provider_type: remote::brave-search - config: api_key: '********' max_results: 3 provider_id: tavily-search provider_type: remote::tavily-search - config: {} provider_id: code-interpreter provider_type: inline::code-interpreter - config: {} provider_id: rag-runtime provider_type: inline::rag-runtime vector_io: - config: kvstore: db_path: /Users/leseb/.llama/distributions/ollama/faiss_store.db namespace: null type: sqlite provider_id: faiss provider_type: inline::faiss scoring_fns: [] server: port: 8321 tls_certfile: null tls_keyfile: null shields: [] tool_groups: - args: null mcp_endpoint: null provider_id: tavily-search toolgroup_id: builtin::websearch - args: null mcp_endpoint: null provider_id: rag-runtime toolgroup_id: builtin::rag - args: null mcp_endpoint: null provider_id: code-interpreter toolgroup_id: builtin::code_interpreter vector_dbs: [] version: '2' INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:213: Resolved 31 providers INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => ollama INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => sentence-transformers INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: models => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inference => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-vector_io => faiss INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-safety => llama-guard INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: shields => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: safety => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_dbs => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_io => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => brave-search INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => tavily-search INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => code-interpreter INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => rag-runtime INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_groups => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_runtime => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: agents => meta-reference INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => huggingface INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => localfs INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasets => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasetio => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: telemetry => meta-reference INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => basic INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => llm-as-judge INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => braintrust INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring_functions => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-eval => meta-reference INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval_tasks => __routing_table__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval => __autorouted__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inspect => __builtin__ INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:216: INFO 2025-02-12 10:21:03,723 llama_stack.providers.remote.inference.ollama.ollama:148: checking connectivity to Ollama at `http://localhost:11434`... INFO 2025-02-12 10:21:03,734 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK" INFO 2025-02-12 10:21:03,843 faiss.loader:148: Loading faiss. INFO 2025-02-12 10:21:03,865 faiss.loader:150: Successfully loaded faiss. INFO 2025-02-12 10:21:03,868 faiss:173: Failed to load GPU Faiss: name 'GpuIndexIVFFlat' is not defined. Will not load constructor refs for GPU indexes. Warning: `bwrap` is not available. Code interpreter tool will not work correctly. INFO 2025-02-12 10:21:04,315 datasets:54: PyTorch version 2.6.0 available. INFO 2025-02-12 10:21:04,556 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK" INFO 2025-02-12 10:21:04,557 llama_stack.providers.utils.inference.embedding_mixin:42: Loading sentence transformer for all-MiniLM-L6-v2... INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:210: Use pytorch device_name: mps INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:218: Load pretrained SentenceTransformer: all-MiniLM-L6-v2 INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: all-MiniLM-L6-v2 served by sentence-transformers INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: meta-llama/Llama-3.2-3B-Instruct served by ollama INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::equality served by basic INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::subset_of served by basic INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-correctness served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-relevancy served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-similarity served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-entity-recall served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-precision served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-recall served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-relevancy served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::factuality served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::faithfulness served by braintrust INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::base served by llm-as-judge INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::code_interpreter served by code-interpreter INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::rag served by rag-runtime INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::websearch served by tavily-search INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:106: Serving API eval POST /v1/eval/tasks/{task_id}/evaluations DELETE /v1/eval/tasks/{task_id}/jobs/{job_id} GET /v1/eval/tasks/{task_id}/jobs/{job_id}/result GET /v1/eval/tasks/{task_id}/jobs/{job_id} POST /v1/eval/tasks/{task_id}/jobs Serving API agents POST /v1/agents POST /v1/agents/{agent_id}/session POST /v1/agents/{agent_id}/session/{session_id}/turn DELETE /v1/agents/{agent_id} DELETE /v1/agents/{agent_id}/session/{session_id} GET /v1/agents/{agent_id}/session/{session_id} GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id} GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id} Serving API scoring_functions GET /v1/scoring-functions/{scoring_fn_id} GET /v1/scoring-functions POST /v1/scoring-functions Serving API safety POST /v1/safety/run-shield Serving API inspect GET /v1/health GET /v1/inspect/providers GET /v1/inspect/routes GET /v1/version Serving API tool_runtime POST /v1/tool-runtime/invoke GET /v1/tool-runtime/list-tools POST /v1/tool-runtime/rag-tool/insert POST /v1/tool-runtime/rag-tool/query Serving API datasetio POST /v1/datasetio/rows GET /v1/datasetio/rows Serving API shields GET /v1/shields/{identifier} GET /v1/shields POST /v1/shields Serving API eval_tasks GET /v1/eval-tasks/{eval_task_id} GET /v1/eval-tasks POST /v1/eval-tasks Serving API models GET /v1/models/{model_id} GET /v1/models POST /v1/models DELETE /v1/models/{model_id} Serving API datasets GET /v1/datasets/{dataset_id} GET /v1/datasets POST /v1/datasets DELETE /v1/datasets/{dataset_id} Serving API vector_io POST /v1/vector-io/insert POST /v1/vector-io/query Serving API inference POST /v1/inference/chat-completion POST /v1/inference/completion POST /v1/inference/embeddings Serving API tool_groups GET /v1/tools/{tool_name} GET /v1/toolgroups/{toolgroup_id} GET /v1/toolgroups GET /v1/tools POST /v1/toolgroups DELETE /v1/toolgroups/{toolgroup_id} Serving API vector_dbs GET /v1/vector-dbs/{vector_db_id} GET /v1/vector-dbs POST /v1/vector-dbs DELETE /v1/vector-dbs/{vector_db_id} Serving API scoring POST /v1/scoring/score POST /v1/scoring/score-batch Serving API telemetry GET /v1/telemetry/traces/{trace_id}/spans/{span_id} GET /v1/telemetry/spans/{span_id}/tree GET /v1/telemetry/traces/{trace_id} POST /v1/telemetry/events GET /v1/telemetry/spans GET /v1/telemetry/traces POST /v1/telemetry/spans/export Listening on ['::', '0.0.0.0']:5001 INFO: Started server process [65372] INFO: Waiting for application startup. INFO: ASGI 'lifespan' protocol appears unsupported. INFO: Application startup complete. INFO: Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit) ^CINFO: Shutting down INFO: Finished server process [65372] Received signal SIGINT (2). Exiting gracefully... INFO 2025-02-12 10:21:11,215 __main__:151: Shutting down ModelsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down InferenceRouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ShieldsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down SafetyRouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorDBsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorIORouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolGroupsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolRuntimeRouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down MetaReferenceAgentsImpl INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetIORouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down TelemetryAdapter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringFunctionsRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringRouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalTasksRoutingTable INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalRouter INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DistributionInspectImpl ``` [//]: # (## Documentation) [//]: # (- [ ] Added a Changelog entry if the change is significant) Signed-off-by: Sébastien Han <seb@redhat.com>
217 lines
6.9 KiB
Python
217 lines
6.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
import logging
|
|
import shutil
|
|
import tempfile
|
|
import uuid
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from termcolor import colored
|
|
|
|
from llama_stack.apis.agents import (
|
|
AgentConfig,
|
|
AgentCreateResponse,
|
|
Agents,
|
|
AgentSessionCreateResponse,
|
|
AgentStepResponse,
|
|
AgentToolGroup,
|
|
AgentTurnCreateRequest,
|
|
Document,
|
|
Session,
|
|
Turn,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
Inference,
|
|
ToolConfig,
|
|
ToolResponseMessage,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.safety import Safety
|
|
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
|
from llama_stack.apis.vector_io import VectorIO
|
|
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
|
|
|
|
from .agent_instance import ChatAgent
|
|
from .config import MetaReferenceAgentsImplConfig
|
|
|
|
logger = logging.getLogger()
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class MetaReferenceAgentsImpl(Agents):
|
|
def __init__(
|
|
self,
|
|
config: MetaReferenceAgentsImplConfig,
|
|
inference_api: Inference,
|
|
vector_io_api: VectorIO,
|
|
safety_api: Safety,
|
|
tool_runtime_api: ToolRuntime,
|
|
tool_groups_api: ToolGroups,
|
|
):
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
self.vector_io_api = vector_io_api
|
|
self.safety_api = safety_api
|
|
self.tool_runtime_api = tool_runtime_api
|
|
self.tool_groups_api = tool_groups_api
|
|
|
|
self.in_memory_store = InmemoryKVStoreImpl()
|
|
self.tempdir = tempfile.mkdtemp()
|
|
|
|
async def initialize(self) -> None:
|
|
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
|
|
|
# check if "bwrap" is available
|
|
if not shutil.which("bwrap"):
|
|
print(
|
|
colored(
|
|
"Warning: `bwrap` is not available. Code interpreter tool will not work correctly.",
|
|
"yellow",
|
|
)
|
|
)
|
|
|
|
async def create_agent(
|
|
self,
|
|
agent_config: AgentConfig,
|
|
) -> AgentCreateResponse:
|
|
agent_id = str(uuid.uuid4())
|
|
|
|
await self.persistence_store.set(
|
|
key=f"agent:{agent_id}",
|
|
value=agent_config.model_dump_json(),
|
|
)
|
|
return AgentCreateResponse(
|
|
agent_id=agent_id,
|
|
)
|
|
|
|
async def get_agent(self, agent_id: str) -> ChatAgent:
|
|
agent_config = await self.persistence_store.get(
|
|
key=f"agent:{agent_id}",
|
|
)
|
|
if not agent_config:
|
|
raise ValueError(f"Could not find agent config for {agent_id}")
|
|
|
|
try:
|
|
agent_config = json.loads(agent_config)
|
|
except json.JSONDecodeError as e:
|
|
raise ValueError(f"Could not JSON decode agent config for {agent_id}") from e
|
|
|
|
try:
|
|
agent_config = AgentConfig(**agent_config)
|
|
except Exception as e:
|
|
raise ValueError(f"Could not validate(?) agent config for {agent_id}") from e
|
|
|
|
return ChatAgent(
|
|
agent_id=agent_id,
|
|
agent_config=agent_config,
|
|
tempdir=self.tempdir,
|
|
inference_api=self.inference_api,
|
|
safety_api=self.safety_api,
|
|
vector_io_api=self.vector_io_api,
|
|
tool_runtime_api=self.tool_runtime_api,
|
|
tool_groups_api=self.tool_groups_api,
|
|
persistence_store=(
|
|
self.persistence_store if agent_config.enable_session_persistence else self.in_memory_store
|
|
),
|
|
)
|
|
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse:
|
|
agent = await self.get_agent(agent_id)
|
|
|
|
session_id = await agent.create_session(session_name)
|
|
return AgentSessionCreateResponse(
|
|
session_id=session_id,
|
|
)
|
|
|
|
async def create_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
messages: List[
|
|
Union[
|
|
UserMessage,
|
|
ToolResponseMessage,
|
|
]
|
|
],
|
|
toolgroups: Optional[List[AgentToolGroup]] = None,
|
|
documents: Optional[List[Document]] = None,
|
|
stream: Optional[bool] = False,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = AgentTurnCreateRequest(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
messages=messages,
|
|
stream=True,
|
|
toolgroups=toolgroups,
|
|
documents=documents,
|
|
tool_config=tool_config,
|
|
)
|
|
if stream:
|
|
return self._create_agent_turn_streaming(request)
|
|
else:
|
|
raise NotImplementedError("Non-streaming agent turns not yet implemented")
|
|
|
|
async def _create_agent_turn_streaming(
|
|
self,
|
|
request: AgentTurnCreateRequest,
|
|
) -> AsyncGenerator:
|
|
agent = await self.get_agent(request.agent_id)
|
|
async for event in agent.create_and_execute_turn(request):
|
|
yield event
|
|
|
|
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
|
|
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
|
turn = json.loads(turn)
|
|
turn = Turn(**turn)
|
|
return turn
|
|
|
|
async def get_agents_step(self, agent_id: str, session_id: str, turn_id: str, step_id: str) -> AgentStepResponse:
|
|
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
|
turn = json.loads(turn)
|
|
turn = Turn(**turn)
|
|
steps = turn.steps
|
|
for step in steps:
|
|
if step.step_id == step_id:
|
|
return AgentStepResponse(step=step)
|
|
raise ValueError(f"Provided step_id {step_id} could not be found")
|
|
|
|
async def get_agents_session(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_ids: Optional[List[str]] = None,
|
|
) -> Session:
|
|
session = await self.persistence_store.get(f"session:{agent_id}:{session_id}")
|
|
session = Session(**json.loads(session), turns=[])
|
|
turns = []
|
|
if turn_ids:
|
|
for turn_id in turn_ids:
|
|
turn = await self.persistence_store.get(f"session:{agent_id}:{session_id}:{turn_id}")
|
|
turn = json.loads(turn)
|
|
turn = Turn(**turn)
|
|
turns.append(turn)
|
|
return Session(
|
|
session_name=session.session_name,
|
|
session_id=session_id,
|
|
turns=turns if turns else [],
|
|
started_at=session.started_at,
|
|
)
|
|
|
|
async def delete_agents_session(self, agent_id: str, session_id: str) -> None:
|
|
await self.persistence_store.delete(f"session:{agent_id}:{session_id}")
|
|
|
|
async def delete_agent(self, agent_id: str) -> None:
|
|
await self.persistence_store.delete(f"agent:{agent_id}")
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|