llama-stack-mirror/tests/integration/suites.py
Matthew Farrellee c3fc859257 feat: add dynamic model registration support to TGI inference
add new overwrite_completion_id feature to OpenAIMixin to deal with TGI always returning id=""

test with -

tgi: `docker run --gpus all --shm-size 1g -p 8080:80 -v /data:/data ghcr.io/huggingface/text-generation-inference --model-id Qwen/Qwen3-0.6B`

stack: `TGI_URL=http://localhost:8080 uv run llama stack build --image-type venv --distro ci-tests --run`

test: `./scripts/integration-tests.sh --stack-config http://localhost:8321 --setup tgi --subdirs inference --pattern openai`
2025-09-11 02:02:02 -04:00

129 lines
3.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Central definition of integration test suites. You can use these suites by passing --suite=name to pytest.
# For example:
#
# ```bash
# pytest tests/integration/ --suite=vision --setup=ollama
# ```
#
"""
Each suite defines what to run (roots). Suites can be run with different global setups defined in setups.py.
Setups provide environment variables and model defaults that can be reused across multiple suites.
CLI examples:
pytest tests/integration --suite=responses --setup=gpt
pytest tests/integration --suite=vision --setup=ollama
pytest tests/integration --suite=base --setup=vllm
"""
from pathlib import Path
from pydantic import BaseModel, Field
this_dir = Path(__file__).parent
class Suite(BaseModel):
name: str
roots: list[str]
default_setup: str | None = None
class Setup(BaseModel):
"""A reusable test configuration with environment and CLI defaults."""
name: str
description: str
defaults: dict[str, str] = Field(default_factory=dict)
env: dict[str, str] = Field(default_factory=dict)
# Global setups - can be used with any suite "technically" but in reality, some setups might work
# only for specific test suites.
SETUP_DEFINITIONS: dict[str, Setup] = {
"ollama": Setup(
name="ollama",
description="Local Ollama provider with text + safety models",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
},
defaults={
"text_model": "ollama/llama3.2:3b-instruct-fp16",
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
"safety_model": "ollama/llama-guard3:1b",
"safety_shield": "llama-guard",
},
),
"ollama-vision": Setup(
name="ollama",
description="Local Ollama provider with a vision model",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
},
defaults={
"vision_model": "ollama/llama3.2-vision:11b",
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
},
),
"vllm": Setup(
name="vllm",
description="vLLM provider with a text model",
env={
"VLLM_URL": "http://localhost:8000/v1",
},
defaults={
"text_model": "vllm/meta-llama/Llama-3.2-1B-Instruct",
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
},
),
"gpt": Setup(
name="gpt",
description="OpenAI GPT models for high-quality responses and tool calling",
defaults={
"text_model": "openai/gpt-4o",
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
},
),
"tgi": Setup(
name="tgi",
description="Text Generation Inference (TGI) provider with a text model",
env={
"TGI_URL": "http://localhost:8080",
},
defaults={
"text_model": "tgi/Qwen/Qwen3-0.6B",
},
),
}
base_roots = [
str(p)
for p in this_dir.glob("*")
if p.is_dir()
and p.name not in ("__pycache__", "fixtures", "test_cases", "recordings", "responses", "post_training")
]
SUITE_DEFINITIONS: dict[str, Suite] = {
"base": Suite(
name="base",
roots=base_roots,
default_setup="ollama",
),
"responses": Suite(
name="responses",
roots=["tests/integration/responses"],
default_setup="gpt",
),
"vision": Suite(
name="vision",
roots=["tests/integration/inference/test_vision_inference.py"],
default_setup="ollama-vision",
),
}